日本產業活力再生法等修正案公布施行

  日本政府為求讓日本經濟發展能因應當前國際經濟現勢的結構性變化,相關產業活動有進行革新之必要;因此,日本政府提出「促進我國產業活動革新之產業活力再生特別措施法等法律部分修正案」(以下簡稱修正案),修正案係採包裹立法方式,修正「產業活力再生特別措施法」(簡稱產活法)、「礦工業技術研究組合法」(簡稱研究組合法),以及「產業技術力強化法」(簡稱產技法)等法律。修正案於今(2009)年4月22日經日本國會立法通過,同月30日公布(平成21年4月30日法律第29号),並於同年6月22日施行。以下針對三部法律中之主要修正項目簡介之。

 

  首先,在產活法中,主要修正處是日本政府將出資與民間合作,成立「產業革新機構」股份有限公司,目的在結合公私資源,投資創新活動,包括集結最尖端基礎技術以協助進入應用開發階段,建立連結創投資本、新創企業與擔任將技術事業化之大企業的機制,以及將有技術優勢但埋沒大企業中之技術加以組合,並集中投入人力及資金以發揮價值。其次,在研究組合法中,主要修正處包括,擴大研究組合中可研發主題之技術範圍,放寬加入組合成員之資格,賦予研究組合組織變更、分割合併之可能。最後,在產技法中,主要修正處在於讓國有研發成果可以低於市價之價格實施,以促進將成果活用轉化成為產業實用之支援。日本政府之相關革新作法,其實際成效及對我國之啟發值得後續加以關注。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 日本產業活力再生法等修正案公布施行, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3079&no=55&tp=1 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
日本公布「如何計算森林吸收的二氧化碳量」

  因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法   每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法   因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法   因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數   此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。

日本與歐盟間個人資料之國際傳輸

  歐盟委員會(European Commission)原則上禁止將歐盟境內的個人資料傳輸至境外,只有經歐盟委員會認定其個人資料保護機制達到歐盟認可標準的國家或地區例外,例如:瑞士、加拿大、以色列等。而日本未能進入前揭國家之列的主要原因,係日本之個人資料保護法未將政府部門納入規範對象。但是基於經濟全球化的需求,日本與歐盟自2017年第一季開始加速進行雙邊合意協商。   日本個人資料保護委員會公布,於2017年5月修正施行的個人資料保護法,已符合歐盟資料保護規則中准許進行境外傳輸的標準。其中包括以獨立的個人資料保護機關來確保必要的保全機制能確實執行等五點(新設立個人資料保護委員會、個人資料定義的明確化、個人料去識別化、非法販賣個人資料之處罰、其他)。    歐盟對此表示,雙邊對於個人資料保護之標準的差異性已經漸漸縮小,利於日本與歐盟間個人資料國際傳輸的環境也已經逐漸形成。目前於歐盟境內設立子公司或是設立法人的日本企業,預期2018年即能自由就歐盟境內雇員或顧客的個人資料,進行日本與歐盟間的國際傳輸。    由於歐盟關於個人資料之保護,為歐洲聯盟基本權利憲章(Charter of Fundamental Rights of the European Union)所明定,企業若非法進行個人資料境外傳輸,會被處以高額罰金,金額約相當於該企業一年內全球營業額總額的4%或2000萬歐元,兩者取其高者為上限;股東甚至也可能面臨被提起訴訟的風險。日本此次修法,對日本在歐盟境內的企業經營將帶來莫大的裨益。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP