歐盟執委會(European Commission)的移動與運輸專員(European Commissioner for Mobility and Transport )Violeta Bulc在2016年11月23日於華沙發表歐盟目前到2019年的無人機發展計畫───U-space管理系統,該計畫希望能使無人機融入歐盟公民日常生活中的一部分。 U-Space為都會區上的空間(Urban-Space),也代表「你的空間」(Your space),範圍為150公尺以下涉及日常生活的空域空間。其在經濟目標上,期望藉由具體的政策,包含全自動化的導航與空中交管系統的建立,可以使一般人可以公平且容易的使用無人機,讓無人機應用在未來的日常生活成為普遍的應用活動,藉以促進整個歐盟無人機產業的發展。因此,進一步在法規管理上,需要在歐盟地區確立有關無人機之註冊、辨識以及衛星輔助設備之要求的全面一體化(Harmonized)系統,以確保該系統下的無人機操作均符合安全和保安的標準且可以達到隱私與環境保護的訴求。 目前看來,U-Space是推動無人機應用的管理系統,法規方面需要歐洲航空安全總署(European Aviation Safety Agency, EASA)於2016年8月22日公布之的初步無人機法規草案(EASA ‘Prototype’ Commission Regulation on Unmanned Aircraft Operations)支持,像是全自動化的導航系統需要的衛星輔助系統(Geo-fencing)就在EASA草案中提及。 而根據歐盟同一天的新聞稿,為達成U-Space之建置有三個面向須努力: 1.新創技術專案之展示:根據U-Space制度涵蓋之項目為運作基礎的展示專案應該評估特定技術的可行性,以讓相關產品服務早日投入應用,具體專案計畫將在2017年上半年推出。 2.產業密切合作:必須在產業相信歐盟執委會的決心以及願意投資無人機科技的前提下,執委會發展相關基礎設施才有意義。 3.設立新的法規標準:即就前述提及之EASA初步無人機法規草案徵詢各界之意見,預計蒐集各界相關意見後,並經由歐盟執委會、歐盟理事會(Council of the European Union)以及歐洲議會(the European Parliament)的三方會議後,在近期內出現更為具體的草案,議題將包含安全、資安、環境以及隱私等。
談傳統民俗文化藝術之保護-兼論原住民族傳統智慧創作保護法草案 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。