歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是: 1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。 2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。 3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。 在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展: 1.下世代零組件與系統(A new generation of components and system)。 2.先進的計算(Advanced Computing)。 3.未來網際網路(Future Internet) 4.內容技術與資訊管理(Content technologies and information management)。 5.機器人(Robotics) 6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。 綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。 在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。
何謂芬蘭科學院(AOF)?芬蘭科學院(Academy of Finland, AOF)是隸屬於芬蘭教育、科學及文化部的專業研究資助機構,旨在促進芬蘭科學研究的多樣化及國際化,資助前端突破性科學研究,提供科學技術及科學政策的專業知識,並加強科學研究的地位。芬蘭科學院最高決策單位為七人委員會,委員會主席由科學院院長出任。 底下設有:文化與社會、自然科學與工程、健康醫學以及環境與自然資源四個研究委員會。每一委員會設主席一人委員十人,任期三年。行政單位由大約一百位專家組成,主要工作為準備及執行七人委員會及各研究委員會的各項工作與決策,並撰寫科學報告和研究計畫。 其任務包括獎助大學與研究機構內的科學研究工作與團隊、參與多邊研究計畫的規劃與獎助、資助芬蘭研究人員參與國際研究計畫、評估科研計畫的品質及水準,以及科技政策專業諮詢等。研究範圍涵蓋建築、太空研究、細胞生物和心理學到電子和環境科學研究。
日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。 該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素: 對研發成果的貢獻程度。 智財權歸屬於大學的處理方法。 是否有必要通過大學發布研究成果。 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 雙方是否同意智財權共有。 此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件: 不限制大學後續研究的可能性。 所有的智財權都要適當的努力使其商業化。 研究成果需在約定的期間內進行學術發表。 日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。
日本推升農業資料契約指針成為補助計畫要點日本農林水產省(以下簡稱農水省)從2021年起於補助計畫要點中規定,農業關係人利用農水省補助金導入智慧農機、無人機、農業機器人、IoT機器等所產生資料,且為系統服務業者取得、保管的情況下,須符合2020年農業領域AI資料契約指引要求之相關程序(下稱GL合規)。系統服務業者可依據農水省網站所提供的GL合規CHECKLIST,自行向律師、專利師等諮詢,評估其與農業資料提供者間契約是否GL合規。農水省亦於2020年年底召開兩場相關說明會,條列出須GL合規之補助計畫清單,且相關計畫規定預計於2021年生效(2021年1月6日至2月10日公開招募之智慧農業實證計畫即已有相關規定)。 前述規定係源自於2020年7月17日日本閣議通過最新版「規制改革實施計畫」,其中與「農業資料利用」相關實施項目為:利用農水省補助金導入智慧農業機械時所締結之契約,應符合2020年農業領域AI資料契約指引之核心精神,保障農民可使用其提供給系統服務業者所保管之數據資料。日本政府為促進農業關係人提供資料,於2020年制定農業領域AI資料契約指引,做為農業資料提供者與智農機具系統服務業者訂立契約時之參考。為更進一步促使系統服務業者獲得農業資料提供者的信賴,透過規制改革實施計畫,將該農業資料契約指針推升成為補助計畫要點,可作為我國農業領域推動資料提供、保護、或流通運用機制之借鏡。