遊戲之部分名稱是否會造成商標權侵害? 觀察Active Network v Electronic Art案

  he Active Network Inc. 設立於美國德拉瓦州,主要營運項目為提供整合性資訊平台、市場行銷服務、及線上媒介;另,其主要線上營運項目還包含提供運動訓練服務、休閒活動及運動項目等行程安排,即提供個人健身訓練之建議及服務。

 

  美商藝電(Electronic Art Inc.)設立於美國德拉瓦州,為全球互動娛樂軟體公司之領導者,主要營運範疇為研發、發行、及銷售個人電腦及電視遊樂器相關軟體,其軟體可提供包含PC, PS3, XBOX360, NDS, 及Wii…等平台使用。美商藝電所提供的遊戲軟體之一—活力健身房 (EA Sports Active),目前該軟體僅提供予任天堂Wii遊戲平台,軟體內容為透過遊戲所提供的運動及健身活動,提供虛擬私人教練,給予技巧建議及健身時間表、消耗熱量建議…等功能。

 

  依據Active Network公司所主張之起訴狀內容,未來美商藝電發展EA Sports Active 系列產品,EA Sports Active 2.0,會提供線上個人健身訓練建議及服務功能;如此,相較於Active Network自1999年開始提供的線上健身運動建議等服務項目看來,EA此款遊戲將和Active Network所提供之線上服務內容類似,故主張此款遊戲名稱中的active係侵害Active Network公司所註冊的「ACTIVE®」、「ACTIVE.COM®」、「THE ACTIVE NETWORK®」等商標權。

 

  本案係Active Network於2010年5月28日於加州南區地方法院提起之民事訴訟,主張排除侵害並要求美金75,000-元之賠償金額;目前美商華藝(Electronic Art)尚未提出任何公開意見。未來可視後續法院意見暸解遊戲之部分名稱是否會造成商標權侵權之可能。

相關連結
相關附件
※ 遊戲之部分名稱是否會造成商標權侵害? 觀察Active Network v Electronic Art案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3336&no=57&tp=1 (最後瀏覽日:2025/12/21)
引註此篇文章
你可能還會想看
音樂著作授權費 演出拉鋸戰

  根據著作權法第 82 條規定,著作權仲介團體與利用人間,對使用報酬爭議之調解,由著作權專責機關設置著作權審議及調解委員會辦理。新近社團法人中華音樂著作權仲介協會( MUST )提出網路電視、電影、網路廣播、網路上提供音樂欣賞、入口網站、網路音樂下載等行業業者公開傳輸費率,業者如有串流、下載、同步傳輸行為,應繳納高額之授權費用,遭到 業者抗議,此舉將遏殺數位業者萌芽的機會。   事實上在 94 年時,智慧局的費率審議委員會即曾駁回 MUST 提出的網路電視、電影等公開傳輸費率,但因網路電視、網路影片,所運用的素材不只是音樂,還包括小說、攝影、圖片,如果每一著作人都主張要收費,利用人的負擔將太重,所以智慧局當時並未通過其新費率。   不過,新近 MUST 又重新提出一個新的費率,網路電視、電影( MOD )如以串流方式公開傳輸,授權費用是業者前一年營業收入的 6% ;如果下載到硬碟、光碟片等,不是重製權,只是收下載「過路費」,授權使用費提高到前一年度營收的 10% ;如果是網路電視、電影同步傳輸,則以前一年度營收 2% 收取費用。即使是公益、非營利性的網路電視、電影,也要以全年度節目製播預算的 0.3% 計算音樂著作使用報酬。   由於此一費率與新興網路業者生存關係重大,經濟部智財局於 4 月中旬舉行「 MUST 新增、調高公開傳輸、公開演出使用報酬率意見交流會」,會中最後同意,由同行業的利用人團體一起組成談判小組,再與 MUST 進一步協商,具體討論出雙方能接受的方案。

美國衛生暨福利部於09年8月公布關於醫療資訊外洩通知義務之暫行最終規則

  於2000年基因圖譜解碼後,「基因歧視」議題成為各界關注焦點,而在電子通訊技術之配合下,更加速了包括基因資訊之個人醫療資訊的流通。在此時空背景下,如何能在善用相關技術所帶來的便捷同時,也對於相關資訊不甚外流時,得以有適切的因應措施以保障患者之隱私,成為了必須處理的問題。   美國國會甫於今年(2009年)2月所通過的「經濟與臨床健康資訊科技法」 (The Health Information Technology for Economic and Clinical Health Act, HITECH) 之相關修正中,強化了對醫療資訊之保護,其中要求美國衛生暨福利部(the Department of Health and Human Service, HHS ),針對受保護之醫療資訊未經授權而取得、侵入、使用或公開外洩之情形擬定「暫行最終規則」(interim final rule)進行管理,該項規則亦於今年(2009年)8月24日公布。值得注意的是,HITECH之規範主體(適用主體、商業夥伴)與保護客體(未依法定方式做成保護措施之健康資訊)皆沿用「1996醫療保險可攜性與責任法案」(the Health Insurance Portability and Accountability Act of 1996, HIPAA)之定義。然而,與HIPPA最大的不同在於, HIPAA中僅以私人契約之隱私權政策間接地管理醫療資料外洩事件,但於暫行最終規則中直接課以相關主體一項明確且積極的法定通知義務。HITECH之規範主體,基於其注意義務,應於得知或可得而知之日起算,60日內完成通知義務;視醫療資訊外洩之嚴重程度,其通知之對象亦有所不同,必要時應通知當地重要媒體向外發布訊息,HHS也將會以表單方式公布於其網站中。   整體而言,HITECH首次課以規範主體主動向可能受影響個人通知醫療資訊外洩事件之義務,此為HIPPA過去所未規範者;其次HITECH也突破HIPAA過往基於契約關係執行相關隱私權及安全規定之作法,於法規上直接對於洩露醫療資訊之相關主體課以刑責,強化了違反HIPAA隱私權與安全規定之法律效果。惟值得注意的是,受限於美國國會對HHS提出最終規則之期限要求,HHS現階段所提出的版本僅屬暫行規定,最終規定之最終確切內容仍有待確定,也值得我們持續觀察。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

再工業化!?美國推動先進製造知基礎法制政策研析

TOP