美國新能源法案預定於2010年前興建新核電廠

  美國總統布希於本( 8 )月 8 日簽署能源法案,法案目的除減少對國外能源依賴外,另亦授權興建一座新核能發電廠。布希政府希望於 2010 年前開始建造核能廠。


  儘管核能爭議大,但現今國際油價已飆高達每桶
63 美元,在美國參眾兩院日前通過、布希總統今簽署的能源法案中,同意興建的新核電廠,是美國自 1979 年三哩島事件以來,第 1 座預定興建的核能廠。


  能源法案的通過,被視為是布希政府一大勝利,也是相關利益團體石油公司的勝利。布希自
2001 年上台即大力鼓吹此法案,經 4 年多爭議,眾參院才分別在 7 28 30 日通過。


  除新建核電廠外,能源法案內容還包括:准許在海岸探勘石油與天然氣,這項鬆綁引起環保人士質疑;提供美國能源公司超
10 145 億美元的減稅優惠,這項優惠讓華府輿論質疑,減稅是「肥了石油公司,苦了消費者與納稅人」;另外,鼓勵開發新的潔淨能源、再生能源,提供 18 億美元的獎助,這項具有環保意義、找尋替代能源的條文,也被質疑資助少得可憐。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國新能源法案預定於2010年前興建新核電廠, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=461&no=57&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
良好的隱私權實踐工作有助於強化企業競爭力

  當含有大量個人敏感性特質個資之郵件不小心發送到陌生人的電子信箱時,將可能對當事人帶來無法預估的損害。加拿大隱私委員Daniel Therrien在國際隱私日時(1/28)提醒各企業,不要忽略隱私控管工作對企業競爭力帶來之影響。然這樣的理念不僅僅只適用在大型的企業,加拿大有98%的企業員工少於100人,對於這些成千上萬的小規模企業而言更是重要。   Daniel Therrien說:「我能理解資源有限的小規模企業每天面臨高壓的業務需求,但就相關反饋資料顯示,加拿大當地居民較傾向與具有良好隱私實踐工作之企業進行交易。」因此,良好的隱私實踐工作不僅是有助於消費者,更可協助企業符合加拿大個人資料保護與電子文件法(Personal Information Protection and Electronic Documents Act)之規定。   為協助小規模企業採取積極措施,以保障消費者資料及隱私不被外洩,提高競爭力,加拿大提供相關關鍵步驟供企業參考:(1)不逾越產品或服務目的之資料蒐集;(2)提供顧客清晰易懂之隱私權政策,以便顧客了解資料為何被蒐集,及如何處理、利用;(3)了解蒐集哪些資料、資料儲存期間及方式、有權限接觸之人及刪除方式; (4)對員工進行隱私保護教育訓練;(5)除非必要,否則請避免蒐集如健康狀況、財務資訊等具敏感性之資料;(6)企業應設置窗口或指定專人,針對顧客權利主張或提出與隱私有關之疑問時進行回應。

美國OMB發布M-26-04備忘錄,確立聯邦採購之「無偏見原則」與透明度義務

美國白宮管理與預算辦公室(Office of Management and Budget,以下簡稱OMB)在2025年12月11日發布M-26-04備忘錄(以下簡稱本指引),目標是落實第14319號行政命令「防止聯邦政府中的覺醒AI」(Preventing Woke AI in the Federal Government)。本指引闡述「追求真相」(Truth-seeking)、「意識型態中立」(Ideological Neutrality)兩大「無偏見AI原則」(Unbiased AI Principles),並強制要求聯邦機構在採購大型語言模型(LLM)時,必須將此二原則納入合約條款。 為確保符合規定,本指引要求聯邦機構在進行採購時,應避免強制供應商揭露過於敏感的技術資料(如模型權重),而是採取以下兩層級的資訊揭露架構: 1. 基本透明度要求(Minimum Threshold for LLM Transparency) 各機構於招標階段,應要求供應商提供以下資訊: (1) 可接受的使用政策:界定產品適當與不適當用途的文件。 (2) 模型、系統和/或資料的摘要卡(Model, System, and/or Data Cards):包含訓練摘要、風險緩解措施及基準測試評分。 (3) 終端用戶資源與意見回饋機制:包含用戶教程及針對違反無偏見原則產出的回報管道。 2. 強化透明度門檻(Threshold for Enhanced LLM Transparency) 若機構擬將模型整合至其他軟體或服務中,則需獲取更深入的開發與運作資訊,例如: 1. 預訓練和後訓練(Pre-Training and Post-Training):如影響產出事實性(factuality)的活動、系統提示詞(System Prompts)、以及內容審查過濾器的具體運作。 2. 模型評估:針對政治議題的偏見測試結果與方法論。 3. 模型中嵌入的企業控制(Enterprise-Level Controls): 如可客製化的系統指令或來源引用功能。 4. 第三方對模型的修改:非原廠開發者所施加的額外控制層。 本指引對聯邦行政機構具有行政拘束力。機構必須於2026年3月11日前更新採購政策,並將上述要求納入新舊合約中。值得注意的是,本指引引入了「實質性要求」(Materiality Requirement),即若供應商拒絕針對違反無偏見原則的產出採取糾正措施,將構成合約違約之重要事由,機構得據此終止合約。 觀察美國OMB此次發布的內容,係透過將「意識形態中立」轉化為具體的採購合規要件,OMB利用聯邦政府龐大的購買力,在採購合約中確立供應商的「透明度義務」,OMB指引不僅建立了明確的法遵標竿,更可能發揮示範效應,將政府端的無偏見規範逐步推廣至私營部門,轉化為產業的最佳實踐標準。

電力市場2.0--2015德國電力市場改革最新發展

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP