Proprius21專案乃是日本東京大學提供企業界可以與該校共同進行研究的一種機制,屬產學合作方式之一。此專案之提出,係該校有鑒於過去產業界與學術界合作進行共同研究的模式,多以特定的企業與特定的研究室間進行一對一的研究為主。然此一共同研究方式雖可讓大學所產出的知識貢獻給社會。但仍嫌規模過小,課題及責任分擔或目標成果不夠明確,所以需要一個可以創造更大規模的創新的機制。基此,東京大學希望透過Proprius21專案創造一個可由該校內部數個單位或研究室,共同參與大型研究主題的專案,以實現從多樣化的觀點來因應數個或一個企業需求之共同研究(多對多或多對一),並結合校內能量完成提案的機制。 東京大學規劃在校內以三階段活動進行Proprius21專案:(1)公開交換意見,即讓「產業界與學術界相遇的場合」的廣場活動。(2)濃縮出最佳的主題,以及尋找最佳成員之個別活動。(3)由成員縝密地製作計畫,由成員以外的人審視計畫內容,打造一個更為優質計劃的篩選活動。 為了推動Proprius21專案,東京大學係由產學合作研究推進部協助日本企業與校內研究人員進行個別的會議及研討會或研習營等活動,同時也針對企業在決定研究主題後,至計畫成案為止間之各階段提供各種支援。此外,該部人員也會接受來自產業界的諮詢,並在製作計畫之際,適當地介紹校內的職員,提供技術建議或審視計畫的內容等各種支援。
國際保險公司探討奈米保險機制可行性特定奈米科技經歷研發階段過後,所獲致的成熟技術產品,要邁向市場商業化階段,能否真正成功,取決於市場消費大眾能否具有信心願意採用。而奈米科技由於新興發展存有未知之不確定風險,所以有論者開始規劃研擬,引進責任保險機制,藉由責任風險分散之功能,期望解決面對不確定風險時,能夠足以妥適因應。 依據國際最具份量之瑞士再保公司(Swiss Re) 對於奈米科技之保險機制,2008年出版「奈米科技:微小物質,未知風險(Nanotechnology--Small Matter, Many Unknowns:The Insurers' Perspective)」研究報告 ,其中明文點出,保險業(Insurance Industry)之核心業務即為移轉風險(Transfer of Risk),由保險公司(Insurer)經過精算程序後收取一定費用,適時移轉相關風險,並產生填補功能。 然而,保險業對於可藉由保險機制所分散之風險,亦有其極限範圍,如果超過以下三原則者,則會被認為超出可承擔風險範圍,屬保險業無力去承擔者,所以保險機制之引進將不具可行性: (1)風險發生之可能機率與發生嚴重程度,現行實務沒有可行方式能加以評估者。 (2)當危害產生時,所造成之影響為同時擴及太多公司、太多產業領域、或太廣的地理區域者。 (3)有可能產生的巨大危害事件,已超過私領域保險業所能承受之範圍者。 此外,為確保未來得以永續經營,保險公司對於願意承保之可保險性(Insurability)端視對於以下各因素性質之評估: (1)可加以評估性(Accessibility):對於所產生之損害係屬可評估,並得以加以計量化、允許訂出價格者(be Quantifiable to Allow Pricing)。 (2)無可事先安排者(Randomness):對於保險事故之發生,必須是不可預測者,並且其所發生必須獨立於被保險者本身主觀意志(the Will of the Insured)之外。 (3)風險相互團體性(Mutuality):相關保險者必須基於同時參加並組成共同團體性,藉以達到分擔分散相關風險性。 (4)經濟上可行性(Economic Feasibility):必須使私人保險公司藉由收取適宜保費,便得以支付對等之賠償費用,可以確保業務經營得以永續持續下去。 綜上所述,可以明瞭並非所有風險,保險公司均願意承保而能達到分散風險者,對於風險必須是可預測性並有承保價值,保險公司本身具有商業機制,依據精算原則確定願意承保之費用,此才可謂實務上可行,對於奈米科技引進保險機制之衡量思考,也當是如此。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
歐盟正式通過資料治理法(DGA),歐盟資料共享發展跨出一大步歐盟理事會(Council of the European Union)於2022年5月16日正式通過了資料治理法(Data Governance Act, 簡稱DGA),本法是歐盟執委會(European Commission)於2020年11月提案,經過一年多的意見徵詢與協商,歐盟議會(European Parliament)於今(2022)年4月6日以501票贊成通過,隨後由歐盟理事會通過公布,本法預計將於2023年8月正式生效。 DGA包含幾大面向,除了針對資料中介服務(data intermediation)、資料利他主義(data altruism)、歐盟資料創新委員會(European Data Innovation Board)等機制建立的規定外,在第二章特別針對公部門所持有之特定類別資料的再利用(reuse)進行規定。當公部門持有的資料涉及第三方受特定法律保護的權利時(如涉及第三方之商業機密、智慧財產、個資等),本法規定公部門只要符合特定條件下可將此類資料提供外界申請利用;若為提供符合歐盟整體利益的服務且具有正當理由和必要性的例外情況下,得授予申請對象專有權(exclusive rights),但授權期間不得超過12個月;歐盟應以相關技術確保所提供資料之隱私和機密性。 再者,各會員國應指定現有機構或創建一個新機構擔任提供上述資料類型的單一資訊點(Single Information Point, SIP),以電子方式公開透明地提供資料清單,包含可申請利用之資料的來源及相關描述(至少包含資料格式、檔案大小、再利用的條件等),以提供中小企業、新創企業便利、可信的資料查詢管道。此外,歐盟執委會應建立一個單一近用點(Single Access Point, SAP),提供一個可搜尋公部門資料的電子登記機制(a searchable electronic register of public-sector data),讓使用者得直接搜尋各會員國單一資訊點(SIP)中所提供的資料及相關資訊。 DGA是歐盟2020年2月發布歐盟資料戰略(European Data Strategy)後的第一個立法,歐盟希望透過本法建立一套能提升資料可利用性和促進公私部門間資料共享的機制,以創造歐盟數位經濟的更高價值。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」