歐盟執委會正式提案,授權各國決定是否開放種植基因改造作物

  歐盟執委會於7月13日正式提案,會員國得在各自領土範圍內決定准許、限制或全面禁止基因改造作物的栽種。執委會的提案內容包括對於基因改造作物與非基因改造作物的共存(在同一區域內栽種)管制建議,同時也提出修正條文草案建議供各國於修正各國內有關基因改造作物相關法律的參考。執委會的提案修正了歐盟2001/18/EC指令(Directive 2001/18/EC)使得各會員國可因地制宜考量,自行決定基因改造作物的允許栽種與否。
  執委會的提案源自今年三月時對會員國的承諾。歐盟健康與消費政策委員會的主席表示,執委會此提案兌現了當時要在今年夏天結束歐盟各國對基因改造作物的爭議的承諾,此同時他也強調歐盟現行以科學為基礎的授權機制並非完全廢除,全面性的安全評估與監控系統仍繼續運作,這也是歐盟對基因改造作物耕種給予各國彈性措施的同時對安全基本把關的表現。
  歐盟原有的規定訂有基因改造作物與非基因改造作物0.9%共存門檻(labellingthreshold,指由受驗作物全部基因中所含改造基因的比例判斷是否為基因改造作物的標準),各會員國必須立法採行有關措施(如作物田的間距)以符合該項要求。
但過去幾年的運作經驗發現,耕作非基因改造作物農民的潛在損失並不限於因為所產作物超過該門檻,某些案例中,基因改造有機物殘存於食品中,反而使得想要將食品以不含基因改造有機物產品販賣者造成損失。執委會新的建議案給予各國調整該共存門檻的權力,同時,各國也可以成立非基因改造專區等。2001/18/EC指令的修正條文(第26b條)將適用於所有的基因改造有機物,各國得自行決定限制或禁止其境內的基因改造作物耕種,無須執委會的授權,但須在境內措施施行一個月內通知歐盟各國及執委會。執委會的提案將在歐洲議會及歐洲理事會通過後正式施行。
  對於此一即將於歐盟施行的新基因改造作物耕種規範,生技產業顯然有不同意見,依照生技業者協會EuropaBio的聲明,他們認為新規範充滿對新科學的偏見且阻礙農民的自由選擇權。基於產業的觀點,新的規範架構也有疑慮,例如:0.9%的門檻下放各國自行決定調整,往後將引起權責機關以及農民、買家、以及有關產業製造商之間的爭議;新措施也造成對歐盟內部市場的壁壘—造成歐盟境內國家的或區域的限制林立,而與歐盟的基本原則相悖;最後,對於科學的偏見與歐洲食品安全局(EFSA)的聲譽之影響也是一大隱憂。
  歐盟對基因改造作物的立場一直尚未定調,新規範亦僅只是採取「下放」給各國自行決定的作法,惟實際上的運作,綜合當前對基因改造作物之安全性充滿疑慮與爭議的氛圍下,各國未來自行訂定規範將更寬或更嚴,後續發展如何有待密切觀察。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 歐盟執委會正式提案,授權各國決定是否開放種植基因改造作物, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5292&no=57&tp=1 (最後瀏覽日:2025/12/24)
引註此篇文章
你可能還會想看
美國聯邦通訊傳播委員會決議將進行網路中立立法

  美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )在2009年10月22日表決,一致同意開始進行對「網路開放」(Open internet)相關之規範。除了2005年所提出之前四項提議原則外版本外,FCC新提出兩項提議原則,尋求意見,共包含: 1. 確保網路使用人均可選擇網路服務及內容之自由; 2. 保護對合法網路應用和合法服務使用之權利; 3. 選擇於網際網路上使用設施(devices)之自由; 4. 網路提供業者(network providers)、應用提供業者(application providers)、服務業者(service providers)、和內容提供業者(content providers)者間之競爭關係; 5. 網路提供業者之管理措施,不得基於網路流量(traffic)而對之歧視(discriminate),但得基於顧客之利益采取相關管理措施; 6. 寬頻提供業者,需揭露網路管理措施之方案資訊,以及管理措施對使用者所造成之影響。   參議員John McCain 則表示,網路中立(Net neutrality)的原則,將會扼殺創意和傷害就業市場,該議員並提出網路自由法案(Internet Freedom Act of 2009),認為該法案使避免網路受到政府管控,並且允許持續的創新和創造更多高價值之就業機會。維持網路事業的自由,免於沉重的規範,將是對經濟最佳之刺激方式。   同時也有人質疑,FCC並非授權管理網路之機構,且其所訂定之原則,並未具有法規效力,無法強制執行,而FCC制定該原則之意義為何?但FCC則表示,已獲得政策原則執行之授權。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與

  日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。   本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。

歐盟部長理事會通過第16輪對俄羅斯制裁規定,持續打擊規避管制行為

歐盟部長理事會(The Council of the European Union)於2025年2月24日通過第16輪對俄羅斯的制裁規定,以因應俄羅斯持續滿三年非法侵略烏克蘭的行為。第16輪制裁針對俄羅斯經濟中具有系統重要性的部門,例如能源、貿易、運輸、基礎建設和金融服務加強管制,並且加強打擊規避制裁的行為。 第16輪制裁中有關出口管制的黑名單交易對象、物流與金流的措施概述如下: 1.實體名單更新與反規避 (1)制裁名單新增管制理由,包括制裁支持不安全油輪(unsafe oil tankers)營運者。 (2)將74艘貢獻俄羅斯能源收入的船隻,列入制裁名單。 (3)對53家支持俄羅斯軍工複合體(military-industrial complex)或從事規避制裁的新公司(其中包括俄羅斯以外國家的34家公司),實施針對性的出口限制。 (4)實體名單新增83個實體(包括48名自然人及35個法人實體),例如支持俄羅斯軍工複合體、積極從事規避制裁、俄羅斯加密資產交易所,以及海事領域的公司。 2.軍民兩用項目出口管制 (1)違反化學武器公約,用於生產氯化苦(chloropicrin)和其他用作化學武器的防暴劑(riot control agents)的兩用化學前驅物(precursor)。 (2)用於製造武器的電腦數控(Computer Numerical Control,即CNC)工具機相關軟體,以及俄羅斯軍隊在戰場上駕駛無人機時使用的視訊遊戲控制器。 (3)鉻礦石及化合物。 3.金融業措施 (1)將13家提供專門金融訊息服務的金融機構列入實體名單。 (2)對於使用俄羅斯中央銀行金融訊息系統(Financial Messaging System of the Central Bank of Russia)規避歐盟制裁者,在交易禁令(transaction ban)中增加3家銀行。

TOP