歐盟執委會於7月13日正式提案,會員國得在各自領土範圍內決定准許、限制或全面禁止基因改造作物的栽種。執委會的提案內容包括對於基因改造作物與非基因改造作物的共存(在同一區域內栽種)管制建議,同時也提出修正條文草案建議供各國於修正各國內有關基因改造作物相關法律的參考。執委會的提案修正了歐盟2001/18/EC指令(Directive 2001/18/EC)使得各會員國可因地制宜考量,自行決定基因改造作物的允許栽種與否。
執委會的提案源自今年三月時對會員國的承諾。歐盟健康與消費政策委員會的主席表示,執委會此提案兌現了當時要在今年夏天結束歐盟各國對基因改造作物的爭議的承諾,此同時他也強調歐盟現行以科學為基礎的授權機制並非完全廢除,全面性的安全評估與監控系統仍繼續運作,這也是歐盟對基因改造作物耕種給予各國彈性措施的同時對安全基本把關的表現。
歐盟原有的規定訂有基因改造作物與非基因改造作物0.9%共存門檻(labellingthreshold,指由受驗作物全部基因中所含改造基因的比例判斷是否為基因改造作物的標準),各會員國必須立法採行有關措施(如作物田的間距)以符合該項要求。
但過去幾年的運作經驗發現,耕作非基因改造作物農民的潛在損失並不限於因為所產作物超過該門檻,某些案例中,基因改造有機物殘存於食品中,反而使得想要將食品以不含基因改造有機物產品販賣者造成損失。執委會新的建議案給予各國調整該共存門檻的權力,同時,各國也可以成立非基因改造專區等。2001/18/EC指令的修正條文(第26b條)將適用於所有的基因改造有機物,各國得自行決定限制或禁止其境內的基因改造作物耕種,無須執委會的授權,但須在境內措施施行一個月內通知歐盟各國及執委會。執委會的提案將在歐洲議會及歐洲理事會通過後正式施行。
對於此一即將於歐盟施行的新基因改造作物耕種規範,生技產業顯然有不同意見,依照生技業者協會EuropaBio的聲明,他們認為新規範充滿對新科學的偏見且阻礙農民的自由選擇權。基於產業的觀點,新的規範架構也有疑慮,例如:0.9%的門檻下放各國自行決定調整,往後將引起權責機關以及農民、買家、以及有關產業製造商之間的爭議;新措施也造成對歐盟內部市場的壁壘—造成歐盟境內國家的或區域的限制林立,而與歐盟的基本原則相悖;最後,對於科學的偏見與歐洲食品安全局(EFSA)的聲譽之影響也是一大隱憂。
歐盟對基因改造作物的立場一直尚未定調,新規範亦僅只是採取「下放」給各國自行決定的作法,惟實際上的運作,綜合當前對基因改造作物之安全性充滿疑慮與爭議的氛圍下,各國未來自行訂定規範將更寬或更嚴,後續發展如何有待密切觀察。
本文為「經濟部產業技術司科技專案成果」
2019年2月13日,歐盟針對數位化單一市場著作權指令(Directive on Copyright in the Digital Single Market,2016/0280(COD))(下稱著作權指令)之爭議條款第11條及第13條進行討論修正,並達成共識。 從2016年9月,歐盟委員會提出修改新版著作權法,一直到去年9月12日,通過「著作權指令」法案,兩年多的改革過程始終產生多方爭議;其中,最具爭議性的有兩大條款:第11條「連結稅」(link tax),是要求網路平台業者在使用或摘錄其著作內容時,需向上傳的出版、新聞業者支付授權費用,對於Google、YouTube等網路巨擘易造成傳播新聞資訊的阻礙;而第13條「上傳過濾器」(upload filter),則是強調網路平台業者需負監督責任,防止上傳者侵權行為,現今流行的模仿搞笑影片、歌曲混音、翻唱影片等涉及部分著作權問題者,都有可能受到法規影響而大量減少。 近二十年以來,網路平台業者大多可以避免侵權責任,只要他們不知道上傳的內容侵權,並在發現侵權後立刻將內容移除。此次,著作權指令將加強規範於網路平台業者的行為,要求平台業者建立有效過濾機制,適當監督新聞傳播及熱門資訊之分享,並保護出版業、新聞業、文創產業等的著作權,且未來允許網路平台業者須支付授權費給著作權人。 此次修正的著作權指令法案,歐洲議會將預計於3月或4月進行投票,確認修法是否通過。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
吸引優秀外籍人才,澳洲祭出租稅優惠全球化競爭之趨勢下,各國紛紛寄出各式誘因以搶奪優秀人才,澳洲政府在今( 2006 )年 2 月中向國會提出所得稅法修正案( Tax Laws Amendment (2006 Measures No. 1) Bill 2006 ), 期能將優秀高級技術人才延攬至澳洲,使澳洲成為國際企業之營運重鎮( as a business location )。 目前根據澳洲稅法規定,因工作而在澳洲暫時居留者,從課稅角度均被視為澳洲居住者( treated as Australian residents for tax purposes ),由於澳洲對居住者採取全球課稅( taxed on worldwide income )之原則,故除來源於澳洲之所得外,在澳洲工作之外籍人才申報澳洲所得稅時,也需將其在澳洲以外之所得一併申報。雖然目前這些外籍工作者的境外投資所得或可主張租稅減免( foreign tax credits ), 但仍須進行年度所得申報,並可能被重複課稅。 新修正規定 引進暫時性居住者( temporary residents )之概念,所謂暫時性居住者係指暫時性簽證之持有者,此一簽證乃根據 1958 年移民法( Migration Act 1958 )核發。凡持有暫時性簽證者,其澳洲來源所得仍依法課稅,但其國外來源所得則免徵所得稅。另 暫時性居住者之資本利得( capital gains )依非居住者身份( non-residents )課稅;其對外國債務人提供之貸款利息所得,得免予扣繳( relief from interest withholding tax obligations ),由於企業乃扣繳之義務人,此等規定可降低企業在管理外籍員工所需付出之法規成本。 新規定無適用年限之限制,亦未規定欲適用新規定者,是否在修正通過前即應具有暫時性居住者之身分, 一般認為,修正之新規定將因租稅部分之誘因,有助於澳洲延攬優秀之外派人才。
FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」 為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。 根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括: (1) 醫療器械可能帶來好處程度。 (2) 醫療器械存在的風險程度。 (3) 關於替代治療或診斷的利益-風險之不確定程度。 (4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。 (5) 公共衛生需求的程度。 (6) 依據臨床證據可支持上市前之可行性。 (7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。 (8) 上市後緩解措施的有效性。 (9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。) (10) 對於早期患者訪問醫療器械的可能帶來的益處。 本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。