美國加州公共事業委員會通過可再生能源招標機制

  日前,美國加州公共事業委員會(California Public Utilities Commission, CPUC)一致投票通過「可再生能源招標機制」(Renewable Auction Mechanism, RAM)。該委員會期待藉由此種招標機制的上路實施,在加州境內發展各種中小型可再生能源企劃案,並且針對此種企劃案下所生產之再生能源開放最高收購電力為20MW的採購標準。


  可再生能源招標機制之實行方式為欲參與該招標機制之企劃案業者,在一年兩次的拍賣期間提出不可議價之拍賣出價,以爭取相關招標企劃案之補助經費。該種企劃案具有1. 符合加州可再生投資組合標準(Renewable Portfolio Standard, RPS)下之20% 投資比例,2.得標企劃案之相關設施地點位於加州境內三大投資人擁有(investor-owned utilities, IOUs)的電力事業服務範圍內,和3. 最高收購再生能源電力為20MW的特性。拍賣出價期間結束後,美國加州公共事務委員會會選擇最小花費之出價企劃案,並與得標之企劃案業者簽署長程契約,而該企劃案業者也會被列於快速發展建設計劃之名單中,以進行後續的計畫發展與相關設備建設。


  目前加州相關當局針對小型可再生能源企劃案,傳統上適用一固定費率之電力收購制度(feed-in tariff, FIT)。然而,即便可再生能源招標機制之實施方式與FIT類似,卻沒有能源價格因立法管轄權和其他因素所造成之不確定性存在。故此,在可再生能源招標機制下之企劃案業者可依其所能負擔之價格參與競標,此外亦可防止如西班牙和其他地方所發生之FIT市場過熱之情況產生。


  對於可再生能源招標機制之推行及實施,加州公共事業委員會希望其能產生促進競爭、提供最低花費與促進發展相關資源之結果。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國加州公共事業委員會通過可再生能源招標機制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5430&no=57&tp=1 (最後瀏覽日:2025/04/03)
引註此篇文章
你可能還會想看
日本公布資料信託功能認定指引ver1.0並進行相關實驗

  日本總務省及經濟產業省於2017年11月至2018年4月間召開6次「資料信託功能認定流程檢討會」(情報信託機能の認定スキームの在り方に関する検討会),檢討具備資料信託功能之「資料銀行」認定基準及模範條款等事項,於2018年6月公布「資料信託功能認定指引ver1.0」(情報信託機能の認定に係る指針ver1.0),以利實現個人資料流通並創造新服務型態。資料銀行係指基於與個人間資料利用契約,透過PDS(personal data store)等系統管理個人資料,根據個人指示或預先設定的條件,於判斷妥當性後向第三方提供資料之行業。目前指引內容包括︰(1)資料信託機能認定基準︰具體內容包括業者適格性、資訊安全原則、資訊安全具體基準、治理體制、業務內容等;(2)模範條款記載事項︰針對個人與資料銀行、資料銀行與資料提供者、資料銀行與接受資料提供者間關係,列出具體應記載事項;(3)資料信託機能認定流程。   作為日本總務省「資料信託功能運用推動計畫」(情報信託機能活用促進事業)一環,日立製作所、東京海上日動火災保險、日本郵局等於2018年9月10日發表將根據「資料信託功能認定指引ver1.0」,進行「資料銀行」個資管理、提供及運用等實驗,參與者分別扮演資料提供者、資料銀行和資料利用者三種角色,未來將會參考實驗結果,提出認定基準改善建議。

美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引

美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容: (1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。 (2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。 (3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。 具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。 從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。

Google宣告關閉西班牙Google新聞服務

  搜尋引擎巨人Google在西班牙施行新著作權法前關閉該國的Google新聞服務。西班牙將於2015年1月正式施行新著作權法,新法中出版商將可向新聞内容聚合平台業者(news aggregator)徵收授權金,且著作權人不得約定不行使該權利。新法中並未明定新聞内容聚合平台業者如Google新聞與Yahoo新聞應支付的授權金額,但卻規定違反此法令的公司需繳付75萬美金的罰款。   近年來,歐盟各國如德國、法國相繼推行新著作權法,讓著作權人得向新聞内容聚合平台業者徵收授權金,而Google則透過與出版商約定不行使該權利作爲因應措施。而由於西班牙此次的新法規定著作權人不得約定不行使該權利,導致Google首次因法規而關閉該國的Google新聞服務。   Google表示此項新法規要求出版商向Google新聞徵收授權金,哪怕它只是一則小小的摘要。Google新聞的總監Richard Gingras表示Google新聞並未含任何廣告亦無實際盈利;相反地,該服務為出版商帶來超過百萬的讀者流量。新法規的施行將增加Google新聞的營運成本,因此才在新法規施行前關閉西班牙版本的Google新聞服務。   此舉將造成當地網路媒體與出版業者的網路流量損失,爲此西班牙新聞媒體組織 (The Spanish Association of Daily Newspaper Publishers, AEDE)發表聲明希望西班牙政府、歐盟當局及反托拉斯聯盟能介入調解此次Google新聞的關閉事件,以保護人民與企業的權利。   新法施行在即,究竟Google新聞的關閉會對此次西班牙新著作權法的施行造成何種影響值得後續關注。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP