2009年美國司法部特別報導,美國每年大約有26,000人為受全球定位系統(Global Positioning System, GPS, 一般稱作衛星導航系統)追蹤的受害者,其中也包括手機使用者。2010年4月,爆發Apple iPhone和Google Android 智慧型手機在當事人不知情的情況下,蒐集手機的位置資訊;更甚者,即使在當事人沒有使用定位應用程式時,仍繼續蒐集其位置資訊,而當事人卻無法拒絕蒐集。對此,手機公司反映,其蒐集的位置資訊行為係利用發射台與無線網路點,協助手機使用者更快速的計算與確認其位置,以提供更良善的定位服務。
美國參議員Al Franken 與Richard Blumenthal對於此議題非常關切,Franken參議員指出,1986年所通過的「電子通訊隱私法(Electronic Comunications Privacy Act of 1986)已無法因應現今網際網路普遍使用。其中「自願揭露客戶通訊或記錄」之規定 (18 U.S.C. §2702 Voluntary disclosure of customer communication or records)更是替手機公司、應用程式業者,與提供無線上網的電信業者開了一個漏洞,允許業者在當事人不知情的情況下,進行定位資訊的蒐集,或與第三人分享位置資訊。
參議員Al Franken 與Richard Blumenthal遂於2011年6月15日提出「2011位置隱私保護法案(Location Privacy Protection Act of 2011)」,提議要求提供位置資訊服務功能的行動裝置製造商,與軟體平台,在蒐集當事人位置資訊,以及與第三人分享位置資訊時,必須先行告知當事人,並取得當事人的同意後,才可進行蒐集與分享。目前該法案至6月16日為止已經過二讀,並提交到司法委員會。
不過,「位置隱私保護法案」僅作告知當事人並取得同意低度要求,另一目前也正在審議的 「地理位置隱私與監督法案(Geological Privay and Survillance (GPS) Act)」,更進一步提供執法單位或政府蒐集與使用定位資訊的指引規範。也有提案對於電子通訊隱私法,必須要因應資通訊科技的應用,為相對應的增修。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會於2020年2月19日發布「人工智慧白皮書」(White Paper on Artificial Intelligence: a European approach to excellence and trust),以打造卓越且可信賴的人工智慧為目標。歐盟認為在推動數位轉型過程中的一切努力,均不應脫離歐盟以人為本的最高價值,包含:開放(open)、公平(fair)、多元(diverse)、民主(democratic)與信任(confident),因此在人工智慧的發展上,除了追求技術的持續精進與卓越外,打造可信賴的人工智慧亦是歐盟所重視的價值。 歐盟執委會於人工智慧白皮書中分別就如何追求「卓越」與「可信賴」兩大目標,提出具體的措施與建議。在促進人工智慧卓越方面,執委會建議的措施包含:建立人工智慧與機器人領域的公私協力;強化人工智慧研究中心的發展與聯繫;每個成員國內應至少有一個以人工智慧為主題的數位創新中心;歐盟執委會與歐洲投資基金(European Investment Fund)將率先在2020年第1季為人工智慧開發與使用提供1億歐元融資;運用人工智慧提高政府採購流程效率;支持政府採購人工智慧系統等。上述各項措施將與歐盟「展望歐洲」(Horizon Europe)科研計畫密切結合。 而在建立對人工智慧的信賴方面,執委會建議的措施則包含:建立有效控制人工智慧創新風險但不箝制創新的法規;具高風險的人工智慧系統應透明化、可追溯且可控制;政府對人工智慧系統的監管程度應不低於對醫美產品、汽車或玩具;應確保所使用的資料不帶有偏見;廣泛探討遠端生物辨識技術的合理運用等。歐盟執委會將持續徵集對人工智慧白皮書的公眾意見,並據以在2020年底前提出成員國協力計畫(Coordinated Plan)之建議。
歐盟提出智慧醫院防禦網路攻擊建議歐盟網路與資訊安全局於2016年11月(ENISA)提出醫院導入智慧聯網技術因應資訊安全之研究建議,此研究說明智慧醫院之ICT應用乃以風險評估為基礎,聚焦於相關威脅與弱點、分析網路攻擊情節,同時建立使用準則供醫院遵守。由於遠端病患照護之需求,將使醫院轉型,運用智慧解決機制之際,仍須考量安全防護問題,且醫院可能成為下一階段網路攻擊之目標,醫院導入智慧聯元件的同時,將增加攻擊媒介使醫院面對網路攻擊更加脆弱,因此,報告建議如下: 1.醫療照護機構應提供特定資訊安全防護,要求智慧聯網元件符合最佳安全措施。 2.智慧醫院應確認醫院內之物件及其如何進行網路連結,並根據所得資料採取相應措施。 3.設備製造商應將安全防護納入現有資安系統,並在設計系統與服務之初邀請健康照護機構參與。 在我國部分,2016年9月行政院生技產業策略諮議委員會議中即提到,強調將建立智慧健康生活創新服務模式,提供民眾必要健康資訊及更友善支持環境,同時結合ICT與精密機械及材料,發展智慧健康服務的模式。2016年11月,行政院推動「生醫產業創新推動方案」,藉由調適法規等方式統整醫療體系與運用ICT技術及異業整合,其中在智慧聯網應用下之資訊安全防護議題實屬重要。
英國「文化、媒體及體育部」宣布了電信管制機關Ofcom的改革英國「文化、媒體及體育部」(Department for Culture, Media and Sport,DCMS)於2010年10月14日宣布關於19個公共部門的改革或廢除的政策,目的在增加政府公共服務的透明度與負責度。這些政策也包含針對電信管制機關Ofcom的改革方案。 針對Ofcom擬議的改革如下:修訂Ofcom每五年檢討公共廣播服務的責任,改由部長決定檢討的時機與範圍。允許Ofcom能有彈性的改變其機關結構,但須經過部長批准。廢除Ofcom促進訓練發展機會與提供公平機會的責任。改變Ofcom對區域頻道Channel 32網路安排之檢討,由年度檢討轉變為保留由Ofcom評估是否需要檢討。修訂Ofcom每三年審查媒體所有權的責任,回歸由部長決定是否檢討。取消對公共廣播服務者需提供年度節目規劃政策資訊的要求。修訂Ofcom對於Channel 3 與Channel 5的執照控制權變更的自動審查責任。允許Ofcom向ITU收取衛星申請費用。而在政府組織改革中,也計畫將郵政主管機關Postcomm合併至Ofcom,並隨之修訂其義務與權限。由這些改革方案來看,主要的作用在於修正或限制部分Ofcom的責任,以將政策制訂的權限回歸DCMS部長,減少不必要的花費與提高行政效率,後續效應值得觀察。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」