中國大陸政府在《國民經濟和社會發展第十二個五年規劃綱要》,以及《國家中長期科學技術發展規劃綱要》中揭示繼續增強自主創新能力,進而推動中國大陸科技進步以及經濟發展。上述指導性的綱要落實到中國大陸立法層面,可從《科學技術進步法》第25條規定「政府必須優先採購自主創新產品」等類似的條文中發現這樣的精神。
2011年11月30日由廣東省第11屆人民代表大會所通過的《廣東省自主創新條例》,即是在這樣的立法背景下所訂定。該條例具體規定「自主創新」之定義、自主創新產業的人才培育措施、自主創新產業的財政性資金補助措施,以及鼓勵研究成果轉化與產業化之措施等,並分別設立專章予以規定。其中特別值得注意者,乃是該條例第18條明文鼓勵自主創新產業與澳門、香港,以及臺灣的企業、大學、研發單位合作科技研發,並建立科學技術創新平臺。
過去中國科研相關政策綱要中雖不乏有鼓勵兩岸產學研合作的宣示,但於法律條文位階中明文鼓勵「台灣參與中國大陸自主創新科技研發」卻還是首見,大幅提高了未來台灣產學研界主動參與大陸地區科技研發的可能性。由於中國大陸在立法特色上,通常係由地方法規率先就特定事務進行規範,爾後政府若認為有以中央法律位階作統一規範時,始進一步訂定法律或中央機關部門規章,因此本條例之制定是否會對於其他中國科研創新法制帶來拋磚引玉之效,頗值得觀察
本文為「經濟部產業技術司科技專案成果」
現行微波通訊頻段(microwave services)為固定及移動廣播輔助服務業者(Fixed and Mobile Broadcast Auxiliary Service, BAS)及有線電視中繼服務業者(Cable TV Relay Service)於新聞採訪時節目傳輸使用。 而一般基地台與核心網路間的傳輸係藉由銅線或光纖。在FCC解除法規管制後,將可允許固定服務業者(fixed service)於未有執照之區域使用此頻段,而不會造成既有業者的干擾。可使用6875-7125 MHz及12700-13100 MHz頻段,總計達650Mhz。固定服務業者可用於基地台中程傳輸(middle mile)使用,並可加快4G網路佈建目標。FCC估計此範圍涵蓋50%國土面積及10%之人口。 FCC放寬之管制內容如下︰ 1.取消「最後連結」(final link)規範-使業者得以微波通訊來進行內容傳輸,且可減少設施的重複佈建。 2.允許適性調變(Adaptive Modulation)-允許固定服務業者在訊號不良時可減慢傳輸速度,以維持通訊連線。 3.不得架設輔助式基地台(Auxiliary station)-因FCC尚未有明確證據顯示當輔助式基地台與主要基地台共存時,是否造成干擾。因此不得架設輔助式基地台。
美國商務部提出CHIPS護欄條款,對受補助者實施限制以維護國家安全美國商務部於2023年3月21日對《晶片與科學法》(CHIPS Act)獎勵計畫中的國家安全護欄條款(guardrails)提出法規草案預告(Notice of Proposed Rulemaking, NPRM),並對外徵詢公眾意見,確保美國和盟友間的技術協調合作,促進共同國家安全利益。CHIPS作為國家安全倡議,以重建和維持美國在全球半導體供應鏈中的領導地位為目標,並確保CHIPS所補助的資金及尖端技術,不會直接或間接使中華人民共和國、俄羅斯、伊朗和北韓等特定國家受益或用於惡意行為,若CHIPS受補助者參與限制交易,政府可以收回全部資金補助。護欄條款對受補助者實施限制說明如下: 1.限制在特定國家擴張先進設施:自獲得補助起10年內,禁止對特定國家或地區的尖端和先進半導體設施為重大投資、協助擴大半導體製造能力。投資金額達100,000美元定義為重大交易,將設施生產能力提高5%為擴大半導體製造能力。 2.限制在特定國家擴建傳統設施:禁止在特定國家擴充半導體新生產線或將傳統半導體設施的生產能力擴大超過10%。若半導體設施的產出「主要服務」於該國國內市場(超過85%),則允許建造新的傳統設施,但最終產品只能在該國家或地區銷售。 3.半導體屬對國家安全至關重要項目:擬將一系列晶片歸類為涉及國家安全,並與國防部和情報局協商制訂清單管制,包括用於量子運算、輻射密集環境,和其他專業軍事能力的新進和成熟製程晶片。 4.加強美國出口管制:透過出口管制和CHIPS國家安全護欄條款,調整對儲存晶片的技術門檻限制並加強控制。對邏輯晶片應用,會設定比出口管制更加嚴格的門檻。 5.限制聯合研究和技術授權:限制與特定外國實體就引起國家安全問題的技術或產品進行聯合研究和技術授權工作。聯合研究定義為由兩人或多人進行的任何研究和開發,技術授權為向另一方提供專利、營業秘密或專屬技術的協議。
日本內閣府發布「綜合創新戰略2024」為應對日益嚴峻的國際情勢,並避免研究能力下降、生態系進展緩慢對經濟、社會發展造成衝擊,日本內閣府於2024年6月4日發布「綜合創新戰略2024」(統合イノベーション戦略2024),提出三大強化措施與三大發展主軸,綜整未來科技與創新的重要發展方向。具體內容整理如下: 1.強化措施 (1)關鍵技術綜合戰略 開發核心技術,在各戰略領域如人工智慧、機器人、物聯網等,透過產官學界合作推進技術融合與研究開發、推動人才培育,並促進新創發展。 (2)加強國際合作 從全球視角積極運用資源進行策略性協作,並以促進開發利用、確保安全性為主要目標,主導、參與重要技術相關之國際規則制定。 (3)強化人工智慧領域競爭力並確保安全性 包含創新研發人工智慧之應用,及利用人工智慧加速創新速度等。 2.發展主軸 (1)推進先進科技戰略 針對各重要領域如人工智慧、核融合能源、量子科技、生物科學、材料科學、半導體與通訊技術(6G)推展研究;確保大學與研究機構之研究安全性與倫理,並為設立智庫強化研究機能預做準備;同時綜合運用各領域的知識創造價值,為整體社會提供自動化、省力化、防災減災之科學技術。 (2)研究能力與人才培育 透過補助優秀大學與研究費用、扶植區域核心及具有特色的研究型大學、強化國家研究設施並促進設施間之合作性發展研究基礎;以及推動開放政府資助研究之資料與學術論文。 (3)營造創新生態系 透過SBIR計畫(Small Business Innovation Research,小型企業創新研發計畫)補助,並促進新創企業之政府採購;藉由產官學合作推展創新;以及擴大政府與民間研發投資規模,促進人才、技術、資金在大企業與新創公司間流動等。 日本政府認為,核融合能源與量子科技等關鍵技術將為新產業發展的開端,本戰略亦將成為未來日本新一期科學技術與創新基本計畫(科学技術・イノベーション基本計画)開展之基礎。我國於半導體、量子科技等關鍵科技發展皆緊跟國際腳步,因此相關戰略措施後續之推動與落實,亦值得我國持續關注、參考。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).