泰國政府於2022年12月22日在政府公報上發布規範數位平臺義務的「數位平臺業務營運通知皇家法令」(the Royal Decree on Operation of Digital Platform Services Which Require Notification,以下簡稱皇家法令),鑒於數位平臺治理的不足與電子交易安全性,泰國政府發布皇家法令用以補充電子交易法(Electronic Transaction Act)之空缺。泰國政府要求數位平臺採取必要措施以符合皇家法令,將於2023年8月20日生效。 皇家法令將「數位平臺」定義為透過電腦網路連結商家、消費者與使用者從而產生電子交易的電子中介平臺。營收達到180萬泰銖的自然人、或營收達到5000萬泰銖的法人、或在泰國境內每月活躍用戶達到5000人的數位平臺需要負擔一定義務,包含向主管機關電子交易發展署(Electronic Transactions Development Agency, ETDA)通報其相關資訊、向ETDA提供年度報告、變更條款的透明度義務、以及境外數位平臺需指定代理人等。此外,數位平臺在提供服務或對數位平臺相關資訊進行修改時,有通知平臺用戶必要資訊的義務。 單一服務營收每年超過3億泰銖、或整體服務營收每年超過10億泰銖、或泰國每月活躍用戶超過總人口10%的數位平臺則為大型數位平臺,大型數位平臺相較於其他數位平臺需要負擔額外義務,除前述數位平臺義務之外,大型數位平臺需要實施風險評估、風險管理措施、系統安全措施與危機管理措施等額外義務。 自歐盟制定數位服務法(Digital Services Act)後,各國陸續建立數位平臺治理制度。經觀察,泰國政府是基於維護電子交易安全目的要求數位平臺負擔相關義務,與歐盟所關注的監督數位平臺與保護使用者基本權利似有所區別,規範對象門檻相比數位服務法來得低,義務也比數位服務法來得少。同時其他亞洲鄰近國家也開始關注數位平臺治理,如南韓、新加坡等也在研擬數位平臺治理法制,各國數位平臺治理法制之發展與走向值得持續觀察。
Uber竊取Waymo無人車技術機密一案,法院裁定返還1.4萬筆機密資料Waymo是Google旗下發展無人車技術的公司,其員工Anthony Levandowski(以下簡稱Levandowski)於2016年2月離職並成立自動駕駛卡車公司Otto,而Uber於同年8月以6.8億美元併購該公司,Levandowski則任職於Uber的自動駕駛車部門。 Waymo在收到供應商誤發的電子郵件發現內含Uber的光學雷達(以下簡稱LIDAR)電路板工程圖,據Waymo表示,LIDAR是一種發展自動駕駛不可或缺的雷射感測器,該工程圖與Waymo設計的工程圖非常相似,此為工程師投入上千小時並投入數百萬美元研發而成。Waymo因而於今(2017)年2月對Uber提出告訴,主張Uber竊取其營業秘密與智慧財產,並表示Levandowski離開Waymo前曾使用私人硬碟下載公司上千筆機密資料,尚包括數名離職員工亦曾下載機密資料,且目前都任職於Uber。 今(2017)年5月美國加州北區聯邦地方法院依Waymo提出的有利證據,包含Uber明知或應知Levandowski握有1.4萬筆與Waymo智財相關的機密資料仍聘僱其為員工;且有完整紀錄顯示Levandowski離職前曾下載Waymo機密文件。因此裁定要求Uber限制Levandowski與相關員工使用與本案相關的LIDAR技術,且須於今年5月31日前返還Waymo,其中包含會議紀錄和Levandowski與相關員工電話紀錄。惟Uber仍可持續發展其自動駕駛技術,但賦予Waymo的律師及技術專家有權監視Uber未來的商業發展,並要求Uber必須在同年6月前調查Levandowski完整的LIDAR技術書面與口頭溝通紀錄,並提交給Waymo。 另方面,Waymo在此同時也宣布與Uber在美國的主要競爭對手Lyft建立自動車駕駛員的合作夥伴關係,挑戰Uber乘車服務的市場地位。本案將於今年6月7日進行審判程序,後續值得持續關注。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。