歐洲藥品管理局(The European Medicines Agency,EMA)於3月底至6月初陸續發布四份利益衝突範。包括「處理管理董事會利益衝突政策方針」(European Medicines Agency Policy on the Handling of Conflicts of Interests of the Management Board),將董事會自過去的利益衝突獨立出來單獨規範;並針對違反利益聲明揭露訂立「EMA科學委員會和專家違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts),和「EMA管理董事會違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Management Board Members);以及修定「處理管理董事會、科學委員會成員和專家利益衝突政策方針」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts)。
針對專家和管理董事會所制定的處理利益衝突規範,主要目的是確保兩者在參與EMA的活動時,不會發生與醫藥業者相關聯的利益衝突,影響EMA公正性。觀察上述規範,可以發現EMA對於專家和管理董事會兩者的規範原則相當一致,皆聚焦於增進利益衝突處理過程的強健性(robustness)、有效性(efficiency)和透明性(transparency)。分別規範的原因在於兩者功能上的區別,分述如下:
1. 專家規範層面,有鑒於在先進醫藥領域中的專家有限,缺少可替代性,因此規範目的在於兼顧公正性與專業之間的平衡;
2. 管理董事會層面,由於其主要任務為監管和決策,規範上區別成員所參與活動的程度和範圍做更為細部的規範,與專家不同,並非有利益衝突就必須迴避。
為進一步加強EMA處理利益衝突的強健性,EMA科學委員會和專家,以及管理董事會違反利益衝突信賴程序的主要規範內容為專家和管理董事會成員作出不實利益聲明時,EMA的處理程序。可區分為調查、聽證與修正三個階段,分述如下:
1.調查階段,首先調查系爭當事人是否為不實之利益聲明後,評估是否啟動違反利益衝突信賴程序;
2.聽證階段,召開聽證會,聽證系爭當事人陳述觀點。倘若確定違反利益衝突信賴,系爭當事人即自EMA除名;
3.修正階段,EMA將審查系爭當事人曾經參與科學審查案件的公正性,並評估是否進行補救措施。
雖然EMA對於專家是否確實聲明利益缺少強制力,然而仍能透過新的利益衝突機制設計,看出EMA對完善利益衝突規範的企圖,值得近來正在修訂利益衝突機制的我國學習。
歐盟執委會發布《受禁止人工智慧行為指引》 資訊工業策進會科技法律研究所 2025年02月24日 歐盟繼《人工智慧法》[1](Artificial Intelligence Act, 下稱AI Act)於2024年8月1日正式生效後,針對該法中訂於2025年2月2日始實施之第5條1,有關「不可接受風險」之內容中明文禁止的人工智慧行為類型,由歐盟執委會於2025年2月4日發布《受禁止人工智慧行為指引》[2]。 壹、事件摘要 歐盟AI Act於2024年8月1日正式生效,為歐盟人工智慧系統引入統一之人工智慧風險分級規範,主要分為四個等級[3]: 1. 不可接受風險(Unacceptable risk) 2. 高風險(High risk) 3. 有限風險,具有特定透明度義務(Limited risk) 4. 最低風險或無風險(Minimal to no risk) AI Act之風險分級系統推出後,各界對於法規中所說的不同風險等級的系統,究竟於實務上如何判斷?該等系統實際上具備何種特徵?許多內容仍屬概要而不確定,不利於政府、企業遵循,亦不利於各界對人工智慧技術進行監督。是以歐盟本次針對「不可接受風險」之人工智慧系統,推出相關指引,目的在明確化規範內涵規範,協助主管機關與市場參與者予以遵循。 貳、重點說明 一、AI Act本文第5條1(a)、(b)-有害操縱、欺騙與剝削行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統施行操縱與剝削,使他人淪為實現特定目的工具之行為,以保護社會上最為脆弱且易受有害操控與剝削影響的群體。 (二)禁止施行本行為之前提要件 1.該行為必須構成將特定人工智慧系統「投放於歐盟市場」(placing on the market)[4]、「啟用」(putting into service)[5]或「使用」(use)[6]。 2.應用目的:該人工智慧系統所採用的技術具有能實質扭曲個人或團體行為的「目的」或「效果」,此種扭曲明顯削弱個人或團體做出正確決定的能力,導致其做出的決定偏離正常情形。 3.技術特性:關於(a)有害的操縱與欺騙部分,係指使用潛意識(超出個人意識範圍)、或刻意操控或欺騙的技術;關於(b)有害地利用弱勢群體部分,是指利用個人年齡、身心障礙或社會經濟狀況上弱點。 4.後果:該扭曲行為已造成或合理可預見將造成該個人、另一人或某群體的重大傷害。 5.因果關係:該人工智慧系統所採用的技術、個人或團體行為的扭曲,以及由此行為造成或可合理預見將造成的重大傷害之間,具備相當因果關係。 二、AI Act本文第5條1(c)-社會評分行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統進行「社會評分」可能對特定個人或團體產生歧視和不公平的結果,以及引發與歐盟價值觀不相容的社會控制與監視行為。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須用於對一定期間內,自然人及群體的社會行為,或其已知、預測的個人特徵或人格特質進行評價或分類。 3.後果:透過該人工智慧系統所產生的社會評分,必須可能導致個人或群體,在與評分用資料生成或蒐集時無關的環境遭受不利待遇,或遭受與其行為嚴重性不合比例的不利待遇。 三、AI Act本文第5條1(d)-個人犯罪風險評估與預測行為 (一)概念說明 本禁止行為規定之目的,旨在考量自然人應依其實際行為接受評判,而非由人工智慧系統僅基於對自然人的剖析、人格特質或個人特徵等,即逕予評估或預測個人犯罪風險。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須生成旨在評估或預測自然人施行犯罪行為風險的風險評估結果。 3.後果:前述風險評估結果僅依據於對自然人的剖析,或對其人格特質與個人特徵的評估。 4.除外規定:若人工智慧系統係基於與犯罪活動直接相關的客觀、可驗證事實,針對個人涉入犯罪活動之程度進行評估,則不適用本項禁止規定。 四、AI Act本文第5條1(e)-無差別地擷取(Untargeted Scraping)臉部影像之行為 (一)概念說明 本禁止行為規定之目的,旨在考量以人工智慧系統從網路或監視器影像中無差別地擷取臉部影像,用以建立或擴充人臉辨識資料庫,將嚴重干涉個人的隱私權與資料保護權,並剝奪其維持匿名的權利。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為以建立或擴充人臉辨識資料庫為目的。 3.技術特性:填充人臉辨識資料庫的方式係以人工智慧工具進行「無差別的擷取行為」。 4.因果關係:建立或擴充人臉辨識資料庫之影像來源,須為網路或監視器畫面。 五、AI Act本文第5條1(f)-情緒辨識行為 (一)概念說明 本禁止行為規定之目的,旨在考量情緒辨識可廣泛應用於分析消費者行為,以更有效率的手段執行媒體推廣、個人化推薦、監測群體情緒或注意力,以及測謊等目的。然而情緒表達在不同文化、情境與個人反應皆可能存在差異,缺乏明確性、較不可靠且難以普遍適用,因此應用情緒辨識可能導致歧視性結果,並侵害相關個人或群體的權利,尤以關係較不對等的職場與教育訓練環境應加以注意。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該系統係用於推斷情緒。 3.因果關係:該行為發生於職場或教育訓練機構。 4.除外規定:為醫療或安全目的而採用的人工智慧系統不在禁止範圍內。例如在醫療領域中,情緒辨識可協助偵測憂鬱症、預防自殺等,具有正面效果。 六、AI Act本文第5條1(g)-為推測敏感特徵所進行之生物辨識分類行為 (一)概念說明 本禁止行為規定之目的,旨在考量利用人工智慧之生物辨識分類系統(Biometric Categorisation System)[7],可依據自然人的生物辨識資料用以推斷其性取向、政治傾向、信仰或種族等「敏感特徵」在內的各類資訊,並可能在當事人不知情的情況下依據此資訊對自然人進行分類,進而可能導致不公平或歧視性待遇。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為係針對個人進行分類;而其辨識目的係為推斷其種族、政治傾向、工會成員身分、宗教或哲學信仰、性生活或性取向等。 3.技術特性:該系統必須為利用人工智慧,並依據自然人的生物辨識資料,將其歸類至特定類別之生物辨識分類系統。 4.因果關係:前述分類依據為其生物辨識資訊。 5.除外規定:本項禁止規定未涵蓋對合法取得的生物辨識資料進行標記(Labelling)或過濾(Filtering)行為,如用於執法目的等。 七、AI Act本文第5條1(h)-使用即時遠端生物辨識(Remote Biometric Identification, RBI)系統[8]執法[9]之行為 (一)概念說明 本禁止行為規定之目的,旨在考量在公共場所使用即時RBI系統進行執法,可能對人民權利與自由造成嚴重影響,使其遭受監視或間接阻礙其行使集會自由及其他基本權利。此外,RBI系統的不準確性,將可能導致針對年齡、族群、種族、性別或身心障礙等方面的偏見與歧視。 (二)禁止施行本行為之前提要件 1.該行為必須涉及對即時RBI系統的「使用」行為。 2.應用目的:使用目的須為執法需要。 3.技術特性:該系統必須為利用人工智慧,在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之RBI系統。 4.因果關係:其使用情境須具備即時性,且使用地點須為公共場所。 參、事件評析 人工智慧技術之發展固然帶來多樣化的運用方向,惟其所衍生的倫理議題仍應於全面使用前予以審慎考量。觀諸歐盟AI Act與《受禁止人工智慧行為指引》所羅列之各類行為,亦可觀察出立法者對人工智慧之便利性遭公、私部門用於「欺詐與利用」及「辨識與預測」,對《歐盟基本權利憲章》[10]中平等、自由等權利造成嚴重影響的擔憂。 為在促進創新與保護基本權利及歐盟價值觀間取得平衡,歐盟本次爰參考人工智慧系統提供者、使用者、民間組織、學術界、公部門、商業協會等多方利害關係人之意見,推出《受禁止人工智慧行為指引》,針對各項禁止行為提出「概念說明」與「成立條件」,期望協助提升歐盟AI Act主管機關等公部門執行相關規範時之法律明確性,並確保具體適用時的一致性。於歐盟內部開發、部署及使用人工智慧系統的私部門企業與組織,則亦可作為實務參考,有助確保其自身在遵守AI Act所規定的各項義務前提下順利開展其業務。 [1]European Union, REGULATION (EU) 2024/1689 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL (2024), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401689 (last visited Feb. 24, 2025). [2]Commission publishes the Guidelines on prohibited artificial intelligence (AI) practices, as defined by the AI Act., European Commission, https://digital-strategy.ec.europa.eu/en/library/commission-publishes-guidelines-prohibited-artificial-intelligence-ai-practices-defined-ai-act (last visited Feb. 24, 2025). [3]AI Act, European Commission, https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (last visited Feb. 24, 2025). [4]依據本指引第2.3點,所謂「投放於歐盟市場」(placing on the market),係指該人工智慧系統首次在歐盟市場「提供」;所謂「提供」,則係指在商業活動過程中,以收費或免費方式將該AI系統供應至歐盟市場供分發或使用。 [5]依據本指引第2.3點,所謂「啟用」(putting into service),係指人工智慧系統供應者為供應使用者首次使用或自行使用,而於歐盟內供應人工智慧系統。 [6]依據本指引第2.3點,「使用」(use)之範疇雖未在AI Act內容明確定義,惟應廣義理解為涵蓋人工智慧系統在「投放於歐盟市場」或「啟用」後,其生命週期內的任何使用或部署;另參考AI Act第5條的規範目的,所謂「使用」應包含任何受禁止的誤用行為。 [7]依據AI Act第3條(40)之定義,生物辨識分類系統係指一種依據自然人的生物辨識資料,將其歸類至特定類別之人工智慧系統。 [8]依據AI Act第3條(41)之定義,RBI系統係指一種在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之人工智慧系統。 [9]依據AI Act第3條(46)之定義,「執法(law enforcement)」一詞,係指由執法機關或其委任之代表,代替其執行目的包括預防、調查、偵測或起訴刑事犯罪,或執行刑事處罰,並涵蓋防範與應對公共安全威脅等範疇之行為。 [10]CHARTER OF FUNDAMENTAL RIGHTS OF THE EUROPEAN UNION, Official Journal of the European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT (last visited Feb. 24, 2025).
關於EMI唱片公司控告MP3tunes公司及其公司創辦人Michael Robertson侵犯其智財權一案之最新發展關於EMI代表其他共14家唱片公司及隸屬旗下之出版業者於2007年11月控告MP3tunes公司及其公司創辦人及執行長Michael Robertson侵犯其智慧財產權一案,美國紐約南區聯邦法院(U.S. District Court for the Southern District of New York)法官近日做出裁定,駁回EMI針對Michael Robertson個人提出的控告,只受理EMI所提出的MP3tunes公司侵害其音樂著作權之主張。 聯邦法院法官William Pauley認為因紐約不是Michael Robertson的主要住所且無足夠證據顯示Michael Robertson於紐約進行經常性的商業活動且因此賺取大量的收益。因此,紐約法院對Michael Robertson個人不具有司法管轄權。另一方面,法官認為MP3tunes公司所提供的網上服務並非純為被動式的,MP3tunes公司提供軟體讓客戶上傳、下載、藉由網上管理其所擁有的歌曲,此種服務為互動式的且有些更精進的服務需付費。法官因此認為MP3tunes公司於紐約進行商業活動,紐約法院因此具有管轄權。 Michael Robertson於此判決後表示鬆了口氣,但承認其公司MP3tunes面對EMI的侵權控訴仍有一段長遠的路要走。Michael Robertson認為此案件之判定將決定日後客戶是否可將他們的歌曲存放在商業性的網站上就如同他們現在將文件、照片與其他個人資訊存放在網站上一樣。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
歐洲生技產業協會促請降低中小型生技產業之專利申請費用在專利領域,歐盟層級目前尚未有任何整合全體會員國內國專利法之有效法規, 1973 年訂定之歐洲專利公約( European Patent Convention, EPC )並非歐盟層級的法律,且 EPC 僅就歐洲專利的申請、審核及取得予以規定,至於專利權之保護,專利權人仍必須在受侵害國家自行尋求救濟,故自 1972 年起,歐盟即一直試圖整合共同體之專利規定,持續催生「共同專利規則」(草案)( Proposal for a Council Regulation on the Community Patent ),目的是希望在歐洲層級,除了可以有統一受理及發給共同體專利之機制外,關於涉及共同體專利實體法上之解釋,亦能予以統一審理、解釋。 目前歐盟各國紛歧的專利制度,使產業維護與保護其專利權益之成本極高,且受到嚴重影響的往往是那些中小型的新創與研發行公司,若再加上其他必要費用及語言隔閡(當前翻譯費用占歐洲專利的所有申請成本的比率可能高達 20 %)等因素一起比較,即可發現歐洲中小型企業處於競爭劣勢;相較於此,美國對雇用員工少於 300 人的企業的專利申請費用,提供高達 80 %的補助。 由於生技產業多為中小型規模的企業,為確保這些企業的競爭力,歐洲生技產業協會( EuropaBio )建議歐盟參考去( 2005 )年 12 月 15 日 通過的「歐盟醫藥品管理局協助中小型公司發展之規則」( Commission Regulation (EC) No 2049/2005 )減免中小型生技製藥公司新藥上市申請規費的方式,對中小型企業之專利申請費用,亦給予折扣。 這項建議獲得歐盟執委會的支持,執委會並打算在 10 月重新提出的共同體專利規則( Regulation on Community Patent - London Protocol )中納入考量根據 London Protocol ,未來歐洲專利得僅以三種語言(英文、德文及法文)提出,該 Protocol 必須至少有八個國家簽署,包括法國、德國及英國,始能生效 截至目前為止,已經有十個國家(包括德國及英國)的國會同意接受該協議,其中七國並已經相關文件交存,因此一般認為 London Protocol 通過的機率極大。