美國政府課責署重視NPE濫訴現象,並提出「patent monetization entities」概念

  近年專利蟑螂(Paten Troll)、非專利實施實體(Non-Practicing Entity, NPE)的興起,使得國際上智慧財產權的運用出現巨幅變化。美國政府、企業及學界皆認為專利蟑螂濫訴現象為亟待解決之課題,而相繼投入研究,並於近日陸續發表重要之研究報告。

 

  繼今年(2012)8月,美國國會研究處 (Congressional Research Service)提出對抗專利蟑螂之研究報告後(“An Overview of the "Patent Trolls" Debate”)。隸屬國會的政府課責署(Government Accountability Office, GAO, 另譯審計總署)所資助的研究團隊,亦於杜克大學科技與法律評論(Duke Law & Technology Review)發表相關研究。研究團隊採取實證的研究方法,於2007年~2011年間,每年度隨機抽樣100家涉及專利訴訟的公司,總計抽樣500家公司。依據該項研究結果,去年(2011)由NPE所提起的專利訴訟,佔研究樣本的40%,相較於5年前的數據,成長幅度高達2倍。本項研究可歸納以下兩項要點:

 

  1.專利訴訟主體的變化

 

  由NPE為原告所提起的專利訴訟數量呈現極速成長;由企業為原告者則逐年下降;同為非專利實施實體之大學,其作為原告所提起之訴訟則未達1%。

 

  2.訴訟並未進行實質審理

 

  由NPE提起之訴訟,其目的在於獲取和解金或授權金,故絕大多數係申請作成即時判決(summary judgement),即當事人一致認為對重要事實不存在爭議,而向法官申請不為事實審理,僅就法律問題進行裁決。

 

  就此,該研究團隊認為,NPE已成為專利制度,甚至係整體經濟之一環,故提出應以「patent monetization entities」取代過往NPE的稱呼,強調此類公司以專利授權或專利訴訟作為公司營利之來源,如此將更為貼切。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國政府課責署重視NPE濫訴現象,並提出「patent monetization entities」概念, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5875&no=57&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

日本修訂大學與研究機關敏感技術出口管理指引,因應外為法相關行政命令修正擴大出口行為之認定範圍

  日本經濟產業省於2022年2月4日公告修正「大學與研究機關敏感技術出口管理指引」(安全保障貿易に係る機微技術管理ガイダンス(大学・研究機関用))。該指引係依據外匯與外貿法(外国為替及び外国貿易法,下稱外為法)及其行政命令訂定,用以協助大學與研究機關,建立符合出口管制法規之內控制度,防止關鍵技術外流。   經產省於2021年11月18日公告修正外為法第55條之10第1項授權訂定之行政命令「出口人法遵標準省令」(輸出者等遵守基準を定める省令の一部を改正する省令),強化「視同出口」(みなし輸出)行為管制之要件明確性。經上述行政命令修正,日本居民位於外國政府支配下,或其行動係經外國政府與組織指示,而受到外國政府與組織強烈影響之情形,視同非日本居民,向其提供敏感技術需申請出口許可。本次指引修正即以此為基礎配合調整相關內容,重點如下: 針對如何認定是否該當「視同出口」要件,追加說明模擬事例與判斷方式,例如:日本大學教授同時在外國大學兼職,又取得敏感技術時,是否該當「視同出口」要件,應以契約判斷或要求該教授應主動申報。 大學與研究機構之出口管理程序:就教職員與學生是否會在「視同出口」要件下,被認定為非日本居民,建議應由大學或機構內之相關部門於其到職或入學時,掌握必要資訊;技術提供方在提供技術前,需先確認技術取得方是否屬於「視同出口」要件下之非日本居民等。 增訂敏感技術出口人之義務:若需向直接取得敏感技術以外之人,獲取判定「視同出口」要件該當性之必要資訊,應訂定程序依此進行判定;大學或研究機構衍生新創事業若有涉及敏感技術出口之業務,大學或機構方應進行相關指導。 遠距工作與線上會議相關:應留意透過線上會議「提供技術」之可能性;存在僱傭關係但未入境日本,經遠距工作提供勞務者,視為非日本居民;於日本境內線上參加海外研討會時提供受管制技術,視同向境外出口技術而須申請許可。

智慧聯網時代巨量資料法制議題研析-以美國隱私權保護為核心

加拿大隱私主管機關發布個人資料保存與處理指引文件

  在世界各國,無論是公務機關或非公務機關,均無可避免地大量蒐集個人資料,這些資料包括一般民眾、雇員、顧客或潛在客戶等。對此,加拿大隱私委員會辦公室(Office of the Privacy Commissioner of Canada,簡稱OPC)發布關於「個人資料保存與處理指引文件:原則與良好實作」(Personal Information Retention and Disposal:Principles and Best Practices),以協助聯邦機構與私人機構對組織內部保有之個人資料,做好妥善保存與處理。   OPC建議組織應在內部制定相關管理政策與程序,並於指引文件中提出11項參考要點,其中包括1.是否定期審查蒐集個人資料與保有目的之關連與妥適性?多久審查一次;2.對於保有之個人資料及保存目的是否進行清查與盤點?多久確認一次?3.個人資料儲存的形式與地點為何?是否有備份?4.法律是否有規定最低保存期限?5.組織如何處理個人資料與相關備份檔案?6.對於儲存個人資料之裝置或設備,是否採行適當地安全維護措施?7.個人資料保管與處理相關政策的核決人為誰?8.對於利用資料生命週期追蹤資料,是否存在適當管制程序?9.內部員工是否了解並熟悉組織關於個人資料保存與處理之政策規定?;是否有制定文件銷毀之安全措施?10.資料等候處理期間是否受到安全妥善之保管?11.對於使用資料之第三方,是否有透過合約或其他機制進行有效監督管控措施?是否制定定期查核機制?等,期以協助組織掌握政策與程序制定要領。

TOP