為有效達成「歐洲2020策略」以及「歐洲2050減碳」等政策目標,由歐盟所補助設立的歐洲建築科技平台(European Construction Technology Platform, ECTP) 其下能源效率建築協會(Energy Efficient Buildings Association, E2BA),於今年度 (2012) 7月份正式對外發布首份創新研究報告「前瞻建築能源效率之研究–創新及公私部門合作」(Energy-efficient Buildings PPP beyond 2013)。該研究報告開宗明義指出,將規劃於2030年透過創新模式,及公私部門合作之落實,建立一個創新高科技能源效率產業,達到建築物碳中和(Carbon Neutral)、提昇產業技術、創造新工作機會以及落實智慧城市計畫等目標。
本研究報告係從「市場」(Market)的角度出發,嘗試提出具可行性之商業模型(Business model),供決策者參考。有鑒於建築產業在能源消耗及碳排放量占有很大的比例,該報告即指出對於既有建築物翻新與整修之急迫性,也認為應該透過政府部門介入,推動相關措施,並導引民間持續落實。其次,於產業評估效益方面,該報告明確指出,透過提昇建築能源效率,將創造許多新的就業機會,帶動地方經濟發展。綜上,歸納二點供參考,第一,為達成長期能源效率提升之目標,公部門將寄出管制手段並設置公共基金(Public funding),以防止產業市場失靈,有其必要性;第二,產業等實務運用契約型態將歷經質變,長期性的節能績效保證契約(Long-term energy performance guaranteed contract)將被越來越常被引用。
適逢歐洲議會通過能源效率指令(Energy Efficiency Directive),指令中第四條係針對公有建築物翻新之規範條款,對此歐盟會員國已陸續檢討各自國內推動現況,但目前各國仍面對許多問題及挑戰,例如既有建築物翻新整修,一直無法有效提昇件數,以及投入資金過於龐大等等因素,除非政府展現積極介入的決心,支持及並投入資金協助推動,否則成效仍可能維持停滯不前的困,相關趨勢發展值得後續觀察。
鑑於社會態度轉變與經濟面的需求,特別是隨著稅法和智慧財產權問題日益複雜,日本企業領袖紛紛延攬龐大的律師團,以借助其專長規劃並解決相關問題,以至法律專業人才需求更甚於以往。為此,日本改變壓低律師人數以及不鼓勵興訟的政策,大刀闊斧推動二次世界大戰以來最大的司法制度改革。本次司法制度大改革廣開職業考試大門,以便有足夠的律師、檢察官與法官,能在日益好訟的日本社會處理龐大民、刑事案件。 為填補需求缺口,日本政府決定將包括律師、檢察官和法官在內的法律專業人士的人數提高一倍以上,在 2018 年以前增至五萬人。同時,重大刑案將在 2009 年引進陪審團制度,以減輕法官負擔。在政府鼓勵下,日本第一所美式法學院於 2004 年成立,現在全國已有七十二所類似的法學院。過去日本大學法律系通常著重法律的學術或理論面,而新式法學院的重心則以實務訓練為主。這些法學院的畢業生不必考舊律師考試,只考專為他們設計的筆試。 我國法學教育改革研議已有幾十年,總統府人權諮詢小組在討論人權問題時,亦有專題涉及法律人養成與司法制度改革,因而研議全盤改革相關制度;行政院經建會在重要人才培育與運用的政策中,亦研擬自去( 94 )年開始推動法律專業學院制度。
歐盟「永續經濟活動分類規則」(Taxonomy Regulation)自從2004年聯合國發布之「Who Cares Wins」文件首次提及ESG原則,近年來國際企業不斷倡導ESG原則,即企業針對環境(Environmental)、社會(Social)、公司治理(Governance)三大面向之要求。歐盟從一開始倡導呼籲企業遵守ESG原則的階段逐漸發展為將ESG原則融入具有法律效力之規範。目前歐盟針對ESG原則擁有兩大基石,也就是2019年11月頒布的「歐盟永續財務揭露規則」(Sustainable Finance Disclosure Regulation)以及2020年6月頒布的「永續經濟活動分類規則」(Taxonomy Regulation)。 「永續經濟活動分類規則」係起源於歐盟委員會於2018年3月發布之「歐盟關於金融永續發展行動計畫」。直到2020年6月,歐洲議會與歐盟理事會終於共同公布「永續經濟活動分類規則」,該法規的目的為:為歐盟建立一個統一通用的法律框架,以分類經濟活動是否具有環境永續性。該法規規定所有金融商品都必須根據該分類規則進行分類。對於宣佈具有環境永續性之商品,皆必須揭露如何適用分類規則以及符合該分類規則;而針對不符合環境永續性之其他商品(包括那些具有ESG目標但不具備環境永續性的商品)將必須提出聲明該金融商品未符合歐盟的永續經濟活動分類規則。 而針對金融商品是否具備環境永續性,需視其是否對於下列事項作出重大貢獻。例如:減緩氣候變化;適應氣候變化;水和海洋資源的持續利用和保護;發展可循環性經濟;污染防治;生物多樣性和生態系統的保護和恢復。 「永續經濟活動分類規則」雖然於2020年6月公布,並於同年7月12日生效,但其中許多重要規定仍尚未明文,須待後續授權之施行細則規範。重要時程如下: 2020年12月31日通過就氣候相關目標的科技篩選標準之施行細則。 預計於2021年12月31日通過就所有其他環境相關目標的科技篩選標準之施行細則。 預計於2022年1月1日達成氣候相關之目標。 預計於2023年1月1日達成所有其他環境相關之目標。 隨著歐盟「歐盟永續財務揭露規則」以及「永續經濟活動分類規則」的發展,逐漸將ESG原則融入法規中,可以明顯看出國際間對於ESG原則愈發要求。我國金管會亦跟隨國際潮流,於2020年8月公布之「綠色金融行動方案2.0」提及永續金融之概念,是以,我國企業亦應著重企業自身針對ESG原則之要求,以與國際趨勢接軌。
美國通訊委員會拍賣位於700MHz頻段之頻譜美國聯邦通訊委員會(Federal Communications Commission, FCC)預計於2008年1月24日開始Action 73之頻譜拍賣程序,以釋出位於700MHz頻段之頻譜,此一頻譜拍賣程序預計將為期數週甚或數月。 根據規劃,美國政府將在2009年年初完成無線廣播電視數位化,屆時廣播電視業者將繳回目前使用之700MHz頻段。又由於此一頻段之電波具有傳輸距離遠與穿透力強之特質,此次之頻譜拍賣活動廣受各方業者矚目,符合競標資格之業者包括電信業者、網路服務提供業者、有線電視業者及衛星電視業者,如AT&T、Verizon Wireless、Google、EchoStar Communications及Cablevision Systems等。據估計,此一頻譜拍賣所得之競標價格可能將會突破百億美元。 此次拍賣之頻譜包括5個頻段,每一個頻段的拍賣規則與用途均有所不同。其中D頻段必須與公共安全機構共用,未來得標者必須與公共安全機構溝通並達成協議,其所建立之全國性網路在緊急狀況發生時,亦必須優先提供公共安全相關機構使用。職是之故,D頻段之競標價格目前仍遠低於聯邦通訊委員會所開出之底價,未來若無業者出價達競標底價,則聯邦通訊委員會將更改底價與競標規則後,重新開放競標。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。