FSF( Free Software Foundation,自由軟體基金會)於日前公佈,將針對現行版本GPL Version 2進行更新修訂。由於GPL Version 2自1991 年使用至今未曾修改過,隨著軟體開發技術日新月異,新興網路應用議題亦不斷產生,故確時有必要更新修訂。FSF預定在2006年第一週會公布GPL v3草案,詳細說明每一條條文修改的原因及影響,並提供予IT產業、軟體使用者、以及和GPL v3有利害關係的各界人士,共同彙集多方的意見,以期獲得更廣大的效益。 然改寫GPL v3實屬不易。GPL是世界性的授權條款,但現今世界各國的著作權法與專利法等相關法令規範不一,再加上新興的網路應用技術與模式,GPL v3新規範應儘可能將上述要項考量納入增訂,以避免引發爭議;若是相關爭議順利解決的話,預料2007年年初就可將GPL v3擬訂完成。
歐盟執委會將修正ePrivacy指令ePrivacy指令修正背景 原資料保護指令將於2018年由一般資料保護規則所取代,在此一背景下,電子隱私指令除補充資料保護指令外,亦訂定關於在電子通訊部門的個人資料處理的具體規則。具體作法,如在利用流量和位置資訊於商業目的之前,應徵得用戶的同意。在ePrivacy指令未特別規定的適用對象,將由資料保護指令(以及未來的GDPR)所涵蓋。如,個人的權利:獲得其個人資料的使用,修改或刪除的權利。 歐盟執委會為進行ePrivacy指令(Richtlinie über den Datenschutz in der elektronischen Kommunikation)改革,於2016年8月4日提出意見徵詢摘要報告,檢討修正ePrivacy指令時著重的的幾個標的: (1)確保ePrivacy規則與未來的一般資料保護規則之間的一致性。亦即評估現有規定是否存在任何重複、冗餘、不一致或不必要的複雜情況。(如個人資料洩漏時的通知) (2)指令僅適用於傳統的電信供應商,而在必要時應該以新市場和技術的現實的眼光,重行評估更新ePrivacy規則。對於已成為電子通信行業新興創新的市場參與者,如:提供即時通訊和語音通話(也稱為“OTT供應商”),由於目前不需要遵守ePrivacy指令主要規定,而應納入修正對象。 (3)加強整個歐盟通訊的安全性和保密性。ePrivacy指令在規範上,確保用戶的設備免受侵入、確保通信的安全性和保密性。本指令第5條第3項,儲存資訊、或近用已存儲在用戶設備之資訊,需得其的同意。該條款的有效性已有爭論,因為新的追踪技術,如:指紋識別設備可能無法被現有的規則所涵攝。最後,有認需得同意的例外規定列表,有必要延伸到對資訊之其他非侵入性的儲存/近用:如網路分析等。這些都是應予以仔細評價和檢視之對象。 公眾諮詢摘要報告內容 經過4月13日到7月5日的公眾諮詢,歐盟執委會於8月4日提出報告。 諮詢意見主要來自德(25.9%)、英(14.3%)、比(10%)、法(7.1%)的回覆。 一、是否有必要在電子通訊部門訂定隱私特別規定? 市民與公民團體咸認有必要在電子通訊部門,甚至流量資料和位址資訊也應該訂定新規(83%)、企業則認為無甚需要,只有在秘密性規則(31%)與流量資料(26%)有需要訂定;主管機關則咸認需要特別規定。 二、現行指令是否已足達成其立法目的?76%市民和公民團體認為未達立法目的,理由如下: ePrivacy指令的範圍太狹小,不包括即時訊息、語音通話(VoIP)和電子郵件應用服務。 規範太模糊,導致會員國之間適用結果和保護程度的差異、不一致。 法律遵循的程度展法程度太差。 三、是否應為新通訊服務訂定新規? 76%市民和公民團體認為適用範圍應該涵蓋到OTT上。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
以『江蘇科技改革30條』解析中國大陸科研經費改革制度中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。 此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。 中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。