2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。
醫療記錄能否受到著作權保護澳洲法院近來持續在著作權相關案件中強調個人精神智慧投入的重要性,在Primary Health Care Limited v Commissioner of Taxation一案中([2010] FCA 419)再度強調了這樣的趨勢。在本案中,原告Primary Health Care為一信託受益人,透過信託取得醫療與牙醫業務,原告主張相關的醫療記錄文件如:處方籤、健康記錄、轉診信(referral letters)以及諮詢意見都有著作權,而於計算稅基時,應從信託的淨收益中加以扣除。 本案法官則指出,醫療記錄必須要達到語文著作的創作性實質要求,才能主張著作權的存在。針對本案的相關醫療記錄法官分別分析如下: 一、 諮詢記錄 所有的諮詢紀錄中,法官認定只有一份諮詢記錄受到著作權的保護,該份記錄從頭到尾只有一個作者,並以連續記述的方式呈現出個人精神智慧的投入;而本案中其他的諮詢記錄則有多個作者,僅僅標記姓名、醫療狀態、藥物治療以及生理、病理資料,難以呈現出個人精神智慧的表現,僅為病人的診斷與治療資訊,因此法官認定這些記錄無法受到著作權的保護。 二、 處方籤與健康記錄 作為本案證據的處方籤,只有姓名、藥物治療、劑量以及制式醫囑等資訊,而健康記錄則只有一連串的病史與醫療程序。因此,法官認定本案中所有的處方籤與健康記錄都不足以作為著作權的保護的客體。 三、 轉診信 法官認定在本案中的轉診信都有一些個人精神智慧的投入,儘管轉診信都是依循固定的格式,但基於轉診信的目的考量,固定的格式與內容都是合理的,因此本案中的轉診信都可以受到著作權的保護。 在Primary Health Care一案中,法官認定相關的醫療記錄文件並不必然一律受到著作權的保護,必須個別的加以認定。在醫療記錄中,只有當所有作者是能夠被辨識、特別是在只有單一作者的醫療紀錄中,能達到著作權法中語文著作對於個人精神智慧投入的要求時,才會受到著作權的保護。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
日本東京大學透過Proprius21專案促進產學合作Proprius21專案乃是日本東京大學提供企業界可以與該校共同進行研究的一種機制,屬產學合作方式之一。此專案之提出,係該校有鑒於過去產業界與學術界合作進行共同研究的模式,多以特定的企業與特定的研究室間進行一對一的研究為主。然此一共同研究方式雖可讓大學所產出的知識貢獻給社會。但仍嫌規模過小,課題及責任分擔或目標成果不夠明確,所以需要一個可以創造更大規模的創新的機制。基此,東京大學希望透過Proprius21專案創造一個可由該校內部數個單位或研究室,共同參與大型研究主題的專案,以實現從多樣化的觀點來因應數個或一個企業需求之共同研究(多對多或多對一),並結合校內能量完成提案的機制。 東京大學規劃在校內以三階段活動進行Proprius21專案:(1)公開交換意見,即讓「產業界與學術界相遇的場合」的廣場活動。(2)濃縮出最佳的主題,以及尋找最佳成員之個別活動。(3)由成員縝密地製作計畫,由成員以外的人審視計畫內容,打造一個更為優質計劃的篩選活動。 為了推動Proprius21專案,東京大學係由產學合作研究推進部協助日本企業與校內研究人員進行個別的會議及研討會或研習營等活動,同時也針對企業在決定研究主題後,至計畫成案為止間之各階段提供各種支援。此外,該部人員也會接受來自產業界的諮詢,並在製作計畫之際,適當地介紹校內的職員,提供技術建議或審視計畫的內容等各種支援。