簡析WTO綠色能源管制爭端案例

刊登期別
第25卷,第6期,2013年06月
 

※ 簡析WTO綠色能源管制爭端案例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6208&no=57&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
德國提出「對外貿易條例」修正草案

  德國聯邦經濟與能源部(Bundesministerium für Wirtschaft und Energie,BMWi)在2017年7月提出「對外貿易條例」(Außenwirtschaftsverordnung)修正草案,以規定基於德國的公共政策安全或基本安全利益,對於外國人(或企業)收購國內公司,在必要時得予以禁止或增加強制條件。   如果交易完成後(一)歐盟之外的收購方將直接或間接持有目標公司25%以上的表決權以及(二)出於公共秩序或安全原因有必要採取上述措施,聯邦經濟與能源部可禁止對德國公司的收購交易。   該法修正草案亦進一步規定,聯邦經濟能源部將在本法律框架下對於涉及以下(技術)領域相關企業併購案之合約談判的各方進行審查程序,以確保國家實質安全利益: 部分能源電力領域,例如:電廠控制技術、電網工程技術、電廠系統或系統操作的控制技術(供電、供氣、燃油或集中供熱等)。 部分用水領域,例如:用水控制、調配或自動化技術(飲用水供應或污水處理設施)。 訊息技術和電信軟體領域,例如:語音和數據傳輸、數據儲存系統及處理系統)。 金融和保險部門、其運營的軟體或現金系統。 涉及醫療保健軟體部門或醫院管理訊息系統、處方藥和實驗室訊息系統的運行等領域部分。 涉及運輸和交通領域內的控制系統、工廠或設施的運行、航空運輸、乘客和貨物系統、鐵路運輸、海運和內河運輸、公路運輸、公共交通或後勤物流等領域。

馬來西亞個人資料保護法之發展仍有諸多不確定因素

  馬來西亞於2010年6月即通過個人資料保護法,延宕經年,該法終於自2013年底開始正式施行,而數項配套規範亦同步施行。前個資保護部門首長Abu Hassan Ismail則被任命為新設之個資保護專員,受通訊及多媒體部部長之指揮監督。   從規範內容架構觀察,馬國此部個資法之範疇堪稱恢弘,不但包括了諸多的實質行為規定,例如,在行為規範的面向上,馬國個資法要求其所謂的資料使用者(data user) 必須遵守多項個資保護原則並尊重當事人權利;此外,該法亦有不少與個資保護相關之組織及程序規則,例如,該法設有行政救濟法庭,如對個資保護專員之決定有所不服者,即可在此提出救濟。惜該法之適用對象不包括公部門,且在適用情形方面,除排除了純粹因個人或家庭目的而蒐集、處理、利用個人資料外,亦針對諸多情形分別排除該法所設之不同個資保護原則之適用,且更賦予個資保護專員另行指定排除適用情形之權限,因而除將相當程度限制該法影響範圍外,並使該法之適用與發展增加許多不確定之因素。

2005年為中國大陸電子商務法制年

  中國大陸於四月一日頒布實施「電子簽名法」後,將為電子交易、信用管理、安全認證、線上支付、稅收、以及隱私權保障等議題拉開序幕。雖然中國大陸對「公司法」、「票據法」、「證券法」與「拍賣法」均進行修訂並頒布新版本,然而卻未與「電子簽名法」銜接,也因此勢必進行後續修訂工作。    此外,為了加速立法進度,國務院辦公廳與國家發改會前後發布「關於加快電子商務發展的若干意見」與「電子商務專項通知」,信產部等部委的專項扶持基金並已開始接受電子商務企業的申請。同時,中國民生醫藥商務網的 CEO 表示,隨著中國大陸逐步開放外資進入電子商務、物流與線上支付等領域,中國電子商務企業必須盡快跨越誠信、支付、物流、稅收、盈利等五大面向,以贏得二次發展之歷史契機。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP