英國資訊專員辦公室進行獨立調查時發現,
1、40%的企業沒有充分認識提出的主要條文;
2、87%的企業無法估計公司中業務為因應改革可能支出的成本;
3、82%的受訪者是無法量化其當前資訊保護的開支;
4、在少數的大型組織觀測調查中發現,估計資訊保護的平均花費時常會受到扭曲;
5、當公司擁有超過250名員工或處理超過10萬筆個資紀錄時,絕大多數都已經聘請資訊保護專人;
6、重點業別包括服務業、金融保險業以及公共管理等,需要針對資訊管理有所計畫。
而調查報告在2013年5月14日於柏林舉辦的第三次歐洲資訊保護日會議中提出,資訊專員Christopher Graham表示「必須說,有少數人不同意為面臨21世紀的挑戰,而需要修訂歐洲資訊保護法。但真正進步之實現在於,今日或將來的法律面,針對個人資料有更好的體現。關鍵點在於確實地衡平理論面與執行面中資訊保護權利之平衡點。」
「已經談論過很多關於『什麼是最好的商業』,但這必須基於合法證據。此次的改革的結果會是非常重要的,我們希望敦促歐盟委員會可以考慮並將重點放在制定法律,為消費者提供真正的保障。」
「同樣的,企業和其他的利益相關者必須參與具建設性的義務與隱私權權利的重要性改革,在此過程中仍然可以受到影響」
為了讓美國消費者可以完全明瞭日常購買食品所蘊含的營養內容,美國食品藥物管理局(Food and Drug Administration, FDA)於二月提案更新現行食品營養標示(Nutrition Facts Label)所必須彰顯的營養物內容。本次食品營養標示的調整,主要是針對從最新飲食建議、共識報告與全國調查數據所彙整出的結果,就攸關消費者疾病、健康與日常需求的營養物,重新就標示內容進行調整,以強化食品安全的資訊透明,落實保障消費者在選擇食品的資訊平等地位。以下,將針對本次主要調整事項分別作簡要說明: 在新的食品營養標示中,首先,要求額外列出添加糖(added sugars)的數量,以避免消費者因食用過多的糖分而導致肥胖(obesity)或促發其他疾病的發生;第二,要求更新食品營養物份量(serving size),對於食品營養標示需顯示消費者「實際食用」的份量,而非顯示消費者「可能食用」的份量;第三,要求標示鉀(potassium)與維他命D(vitamin D)的含量,以反應相關報告顯示美國人普遍對於鉀與維他命D有攝取不足的現象;第四,調整不同營養素(例如:鈉、膳食纖維與維他命D)的每日攝取標示,使消費者瞭解食品所含營養素內容;第五,持續要求標示總體脂肪(Total Fat)、飽和脂肪(Saturated Fat)與反式脂肪(Trans Fat),並去除卡路里來自脂肪的標示,以提供消費者攸關其健康更有用的資訊;最後,針對食品營養標示的型式進行調整,強調例如像是卡路里、份量與每日攝取比率之標示,以緩和美國近來日益嚴重的肥胖與心臟疾病等問題。 考量美國公共健康問題日益浮出檯面,FDA近來針對食品營養標示型式與內容進行調整,希望藉由資訊透明化的方式,讓消費者明瞭市售食品營養素是否影響自身健康,以作為挑選食品時的首要考量,進而降低不健康食品對消費者所帶來的危害。鑑於近來台灣食安問題日益嚴重,衛生主管機關是否亟需就食品營養標示,參酌美國或國外規範重新另作檢視,來確保消費者買得放心、食得安心,並吃出健康,則是現行衛生主管機關需另考量的重點。
日本經產省公布零售電力業指引修正案,以配合電力市場新制度之實施日本經濟產業省2018年9月公布《零售電力業指引》 (電力の小売営業に関する指針,以下稱「本指引」)修正案。 本次主要修正方向為零售電力業者購買電力時若有以下情形,應如何於電源結構表上說明供用電戶參考:(1)跨區調度電力:同年10月開始,零售電力業者若需跨區調度電力,改由日本電力交易所使用「間接競拍」(間接オークション)分配電力容量。故本指引配合規定,原則上以跨區調度取得之電力歸類於電源結構表的「電力交易所」中;(2)使用非化石價值證書:本指引規定,若零售電力業者自日本電力交易所購得非化石價值證書,可於電源結構表中標示使用非化石價值證書之電力配比,並註明如:「本公司販售之受再生能源躉購費率制度(FIT)補助之電力,係使用再生能源限定之非化石價值證書,具有以再生能源發電之實質價值。」;(3)販售特定電源方案:若零售電力業者提供用電戶特定的電源方案,本指引建議業者在製作電源結構表時,應先扣除總電量中特定電源方案之電量後,再計算餘下電量及配比,並註明如:「本公司向部分用戶販售內含水力發電20%以上之特定電源方案,其他非以特定電源方案進行銷售的電源結構請參考圖表。」若未先扣除再計算,也應在表中註明總電量中內含特定電源方案銷售之電量數據。(4)標示電力產地:若零售電力業者以電力產地做為賣點,可依電力來源於電源結構表中標示「自產自消」或「○○地域產電力」。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。