《馬拉喀什條約》全名為《關於為盲人、視力障礙者或其他印刷品閱讀障礙者獲得已出版作品提供便利的馬拉喀什條約》(Marrakesh Treaty to Facilitate Access to Published Works for Persons Who Are Blind, Visually Impaired or Otherwise Print Disabled),2013年由世界智慧財產權組織(WIPO)通過,並於2016年9月30日生效。《馬拉喀什條約》目標是在保護智慧財產權的同時,亦能擴大視覺障礙者資訊及資源獲取的管道,允許盲人及視障者得複製已出版作品、簡化無障礙文本的印刷流通與授權,增加視障者閱讀機會。條約並要求締約方必須在國內法中明文對著作權人權利的例外與限制規定,允許被授權實體(例如為視力及閱讀障礙者服務的非營利性組織),製作圖書的無障礙格式版本,包括點字文本、大字本、數位化音訊等,並允許跨國境交換,均無須請求著作權人授權。 美國是目前擁有最多無障礙格式英文文本的國家。2019年1月28日,美國總統批准《馬拉喀什條約》後,美國成為了該條約的第50個締約國。條約在美國國內實施後,居住在條約締約國的視力障礙者將能立即獲得約550,000份無障礙文本。
美國發明法(America Invents Act)修正法案通過,為美國專利制度寫下里程碑美國參議院在2011年9月通過發明法修正案(Leahy-Smith America Invents Act),並經總統歐巴馬簽署同意公布,預計新修正的法案內容,將為美國專利制度寫下里程碑。觀察該法案幾項重要變革包括: 一、 專利權之取得:以先申請制(First to file)取代先發明制(First to invent),目的在於增進美國專利制度與國際專利制度的調和,以及確保發明人的權利保障可與國際普遍的制度接軌。新規定將自2013年3月16日開始實施。 二、 先前技術(prior art)之定義與新穎性優惠期(grace period):新法擴張先前技術(Prior Art)之範圍,申請專利之發明於申請日之前,如已見於刊物、已公開使用、已銷售或其他公眾所得知悉者,即因已公開而成為先前技術之一部分,喪失新穎性。惟在例外的情況下,申請專利之發明,在申請日前一年內由發明人或共同發明人自己,或間接透過第三人進行之公開行為等,則不被視為先前技術。 三、 支持小型企業或獨立發明人:修正條文要求美國專利及商標局(USPTO)應與相關智慧財產權協會合作,為小型企業或獨立發明人提供協助,並設立專利監察專案(Patent Ombudsman Program)提供申請專利之相關幫助,同時給予小型企業與微型實體(Micro Entities)最高75%的規費減免優惠。 美國在此次修正其發明法的過程中,納入過去25年來國際專利制度協商後的成果,雖有論者指出該法仍未解決部分問題,然而儘管有這些不足之處,新通過的法案仍解決了舊法時期不合理之處。
何謂德國電信媒體法中的「妨害人責任」(Störerhaftung)?原德國電信媒體法第八條條文中所指的「網路服務提供者」為擁有獨自或其他電信媒體及提供接取網路服務的自然人或法人,與我國著作權法中所提及「網路服務提供者」(Internet Service Provider)之適用對象範圍略有不同,而德國民法中有個特殊連坐法-「妨害人責任」(Störerhaftung),所有人對於妨害所有權之人,有排除及不作為請求權,因此,在原德國電信媒體法未規定之特定情形下,「網路服務提供者」應對他人透過其網路所從事的任何侵權違法行為負責。 這項法律使得德國許多咖啡館、公共空間、飯店大廳不願提供免費無線網絡,同時又讓大型咖啡連鎖店如星巴克,以提供免費網絡服務吸引顧客,因為他們就算被捲入網絡侵權責任的訴訟,也不怕支付高額律師費用,小型咖啡館就無法承擔這個風險,只能無奈面對客人轉向大型咖啡連鎖店消費的困境。根據原德國電信媒體法規定,咖啡館業主和其他網路熱點設立者所提供網路服務的方式將可能收到律師的警告函,告知他們不得再為非法下載者提供網路接取服務。 德國聯邦議院(Deutscher Bundestag)於2016年6月初經過激烈的辯論後,通過電信媒體法(Telemediengesetz; TMG)修正草案,將在最新的電信媒體法中免除「網路服務提供者」之「妨害人責任」(Störerhaftung),使德國的免費無線網絡連接點可以增加並走向開放。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」