為了落實美國2010年公布之21世紀通訊與視訊無障礙法(Twenty-First Century Communications and Video Accessibility Act of 2010,CVAA),讓身障者得以使用新興通訊技術,FCC於今(2013)年4月29日公布第二次報告與命令(Second Report and Order)。本次規範重點在修訂2011年對1934年通訊法(Communications Act of 1934)第716、718條之規範,使通訊服務與設備製造之業者,負擔更多的無障礙義務。
針對第716條,規範消費者終端設備,包括手機、筆記型電腦或平板電腦等,在安裝或具備瀏覽器後,將被視為具有提供先進通訊服務(Advanced Communications Services,ACS)之能力,而須提供身障人士無障礙使用非互連VOIP(non-interconnected VoIP)、電子通訊與視訊會議服務。第二次報告與命令相較於2011年,FCC將消費者終端設備皆納為先進通訊服務,而須承擔無障礙義務,本次規則限縮設備製造商之無障礙使用義務。至於第718條則是要求手機製造商與電信服務商提供之手機,如具有網路瀏覽器,則須能使視障者無障礙使用。例如以語音將網址輸入於地址攔(Address Bar)、或是準確使用工具鍵(例如是回復鍵),增加提供瀏覽器業者(e.g .微軟Google)之義務。
FCC要求2013年10月8日以後生產、提供的設備與服務,皆須符合第716、718條規範,使身障者更得方便使用通訊設備。不過, ACS在下述條件可不受無障礙使用限制:
1.手機無法進行相容。
2.設備為客製化、且未有公開販售。
美國於2010年時超過40%以上的成年人,使用網際網路收發郵件、或獲取即時消息,但是,身障者卻難以享有資通訊的便利性。是故,這次FCC對第716、718條重新闡述,是否能降低美國身障者之數位落差,更能受益於科技的進步,將是未來持續觀察的重點。
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
法國高等教育暨研究部宣布額外投資新創企業培育計畫,強化產業競爭力與發展深度技術為強化產業競爭力與發展深度技術,法國高等教育暨研究部(Ministère de l'enseignement supérieur et de la recherche)於2023年1月9日宣布將額外投資5億歐元,以培育更多的研究型新創企業。 基於2021年10月12日法國總統宣布的《法國2030投資計畫》(France 2030),法國政府將於五年內投入540億歐元於新創相關事務,且目前已於2022年達到成立25間獨角獸公司的中期目標。為進一步提高學研機構以研發成果衍生新創之數量,讓新創公司數量成長2倍,法國高等教育暨研究部部長Sylvie Retacleau與法國產業部(Ministre chargé de l'Industrie)部長Roland Lescure提出以下三大行動,並額外投資5億歐元執行: (1)建立25個大學創新中心(Pôles Universitaires d'Innovation, PUI):法國政府將投入1.6億歐元,在大學網站上提供創新戰略、單一治理及敏捷方法,藉此激發研發團隊潛力及創意。PUI將在不額外增設法律規範之情況下,與現有政策結合推動上述措施。 (2)透過既有措施推動深度科技:透過i-Lab、法國科技新興獎學金、深度技術發展援助計畫等現有措施,以及增設法國科技實驗室獎學金,加速深度技術發展計畫。此外,未來也將提供6500萬歐元的補助。 (3)加強推廣研究工作及專題研究計畫(Programmes et équipements prioritaires de recherché, PEPR)成果:未來法國政府將投入2.75億歐元,挑選17項研究成果,建立評估研發成果之檢測及支援能力,並依領域性質,研究各領域專利證書、標準化和相關法規。
新加坡公布「於安全性應用程式負責任地利用生物特徵識別資料指引」協助組織合理利用生物特徵識別資料新加坡個人資料保護委員會(Singapore Personal Data Protection Commission, PDPC)於2022年5月17日,公布「於安全性應用程式負責任地利用生物特徵識別資料指引」(Guide on the Responsible Use of Biometric Data in Security Applications),協助物業管理公司(Management Corporation Strata Title, MCST)、建築物及場所所有者或安全服務公司等管理機構,使各管理機構更負責任地利用安全攝影機和生物特徵識別系統,以保護蒐集、利用或揭露的個人生物特徵識別資料。 隨著安全攝影機等科技應用普及化,管理機構以錯誤方法處理個人生物特徵識別資料之情形逐漸增多,因此PDPC發布該指引供管理機構審查其措施。其中包括以下重點: (1)定義生物特徵識別資料包含生理、生物或行為特徵,及以此資料所建立之生物特徵識別模版; (2)說明維安攝影機及生物特徵識別系統運用所應關鍵考量因素,如避免惡意合成生物特徵之身分詐欺、設定過於廣泛而使系統識別錯誤等情形,並舉例資料保護產業最佳範例,如資料加密以避免系統風險、設計管理流程以控管資料等; (3)說明生物特徵識別資料在個資法之義務及例外; (4)列出實例說明如何安全監控之維安攝影機,並提供佈署建築物門禁或應用程式存取控制指引,例如以手機內建生物識別系統管理門禁,以取代直接識別生物特徵,並有提供相關建議步驟及評估表。 該指引雖無法律約束力,仍反映出PDPC對於安全環境中處理生物特徵識別資料之立場。而該指引目前僅針對使用個人資料的安全應用程式之管理機構應用情境,並未涵蓋其他商業用途,也未涵蓋基於私人目的使用安全或生物特徵識別系統之個人,如以個人或家庭身分使用居家高齡長者監控設備、住宅生物特徵識別鎖等應用情境。
美國白宮於2019年5月發布總統令,提升聯邦及全國之資安人力美國白宮(the White House)於2019年5月2日發布第13870號總統令(Executive Order),旨在說明美國的資安人力政策規劃。 於聯邦層級的資安人力提升(Strengthening the Federal Cybersecurity Workforce)上,由國土安全部(Department of Homeland Security, DHS)部長、管理預算局(Office of Management and Budget, OMB)局長及人事管理局(Office of Personnel Management, OPM)局長共同推動網路安全專職人員輪調工作計畫(cybersecurity rotational assignment program),計畫目標包含:輪調國土安全部與其他機關IT及資安人員、提供培訓課程提升計畫參與者之技能、建立同儕師徒制(peer mentoring)加強人力整合,以及將NIST於2017年提出之國家網路安全教育倡議(National Initiative for Cybersecurity Education, NICE)和網路安全人力框架(Cybersecurity Workforce Framework, NICE Framework,以下合稱NICE框架),作為參與者的最低資安技能要求。同時上述部長及局長,須向總統提交報告說明達成上述目標之執行方案。 於國家層級的資安人力提升(Strengthening the Nation’s Cybersecurity Workforce)上,則表示商務部部長(Secretary of Commerce)、勞工部部長(Secretary of Labor)、教育部部長(Secretary of Education)、國土安全部部長與其他相關機關首長,應鼓勵州、領土、地方、部落、學術界、非營利與私部門實體於合法之情況下,自願於教育、訓練和人力發展中納入NICE框架。此外,將每年頒發總統網路安全教育獎(Presidential Cybersecurity Education Award),給予致力於傳授資安知識之中小學教育工作者。 綜上所述,美國將透過制度、教育與獎勵等方式培育資安人才,提升國內資安人才的質與量,以因應越來越險峻的資安威脅與風險。