美國重新闡述無障礙通訊設備裝置

  為了落實美國2010年公布之21世紀通訊與視訊無障礙法(Twenty-First Century Communications and Video Accessibility Act of 2010,CVAA),讓身障者得以使用新興通訊技術,FCC於今(2013)年4月29日公布第二次報告與命令(Second Report and Order)。本次規範重點在修訂2011年對1934年通訊法(Communications Act of 1934)第716、718條之規範,使通訊服務與設備製造之業者,負擔更多的無障礙義務。

 

  針對第716條,規範消費者終端設備,包括手機、筆記型電腦或平板電腦等,在安裝或具備瀏覽器後,將被視為具有提供先進通訊服務(Advanced Communications Services,ACS)之能力,而須提供身障人士無障礙使用非互連VOIP(non-interconnected VoIP)、電子通訊與視訊會議服務。第二次報告與命令相較於2011年,FCC將消費者終端設備皆納為先進通訊服務,而須承擔無障礙義務,本次規則限縮設備製造商之無障礙使用義務。至於第718條則是要求手機製造商與電信服務商提供之手機,如具有網路瀏覽器,則須能使視障者無障礙使用。例如以語音將網址輸入於地址攔(Address Bar)、或是準確使用工具鍵(例如是回復鍵),增加提供瀏覽器業者(e.g .微軟Google)之義務。

 

  FCC要求2013年10月8日以後生產、提供的設備與服務,皆須符合第716、718條規範,使身障者更得方便使用通訊設備。不過, ACS在下述條件可不受無障礙使用限制:

1.手機無法進行相容。
2.設備為客製化、且未有公開販售。

 

  美國於2010年時超過40%以上的成年人,使用網際網路收發郵件、或獲取即時消息,但是,身障者卻難以享有資通訊的便利性。是故,這次FCC對第716、718條重新闡述,是否能降低美國身障者之數位落差,更能受益於科技的進步,將是未來持續觀察的重點。

相關連結
※ 美國重新闡述無障礙通訊設備裝置, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6332&no=57&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
日本內閣官房提出未來投資戰略報告加速機器人實用及活化

  日本內閣官房日本經濟再生總合事務局(内閣官房日本経済再生総合事務局)在2017年6月9日第10次「未來投資會議」中提出未來投資戰略2017報告(未来投資戦略2017~Society 5.0 の実現に向けた改革~),在成長的戰略成果(5)日本第四次產業革命及新經濟的展開中,分別對於機器人實用、物聯網(IOT)、大數據(BIG DATA)、人工智慧(AI)等提出成果及未來計畫。   機器人加速實用化:首先,機器人廣泛利用在商業設施、機場等日常生活空間,於2016年9月羽田機場設置機器人實驗室「Haneda Robotics Lab」,利用機器人改善服務並補充勞動力。有關打掃清潔、協助移動、查詢服務等17種機器人,將進行實證實驗。而路面協助行走型機器人「RT.1」已經完成,於2015年生活協助型機器人之安全性得到國際認證,其後發展之「RT.2」將使用於長期照顧層面。其次,開發農業使用之自動駕駛拖車,並提供工作實際狀況和土壤狀況之電子管理服務。今年6月開始商業化之自動駕駛顯示器,可以監控自動駕駛耕作機器進行自動耕作等。在物流管理方面,於2018年將於山間部等地區進行無人機的包裹遞送,2020年將在都會區全面無人包裹遞送。預計將與日立等相關公司,進行物流管理系統之開發及活用福島機器人測試場域。

美國零售商Kroger聲稱零售商Lidl註冊之新商標有混淆Kroger的知名商標之虞

  Kroger成立於1883年,在美國擁有近3000家分店,為美國最大食品雜貨零售店,其註冊商標“Private Selection”相當知名,被廣泛使用在超市、便利商店及其他各種零售商店約20多年。然而在全球擁有超過10000家分店的歐洲零售店巨頭Lidl,亦於2016年9月19日於美國註冊與“Private Selection”近似的商標“Preferred Selection”。   對此,Kroger於Lidl在美國開立新門市不久之後,即於今(2017)年6月30日對Lidl起訴,主張Lidl的“Preferred Selection”與Kroger的“Private Selection”品牌商標太相似,Lidl於德國是以低價折扣作定位之連鎖超市,且產品曾被認定為劣質。Lidl的行為意圖混淆“Preferred Selection”與“Private Selection”,將稀釋Kroger的品牌知名度,不僅侵害商標亦將損及商譽,甚至從中牟取不當利益,導致不公平競爭。故Kroger據以向美國維吉尼亞州地方法院請求禁止Lidl販售使用“Preferred Selection”商標的產品。   Lidl反駁認為其商標註冊已有一段時間,Kroger卻故意選其展店亮相後才大肆攻擊Lidl的新品牌,嚴重干擾Lidl的宣傳效益,更何況兩者商標名稱不同,標誌圖形的設計也不同。今年7月25日,美國維吉尼亞州地方法院法官表示,儘管品牌標誌看起來相似,但兩者並無相同或相似的含意,拒絕授予Kroger聲請之禁令。惟兩造於今年9月達成協議,請求法院駁回訴訟,而Lidl最終於今年9月12日放棄“Preferred Selection”商標權。

歐盟將擬訂關鍵促成技術(Key Enabling Technologies)促進總策略

  因為生物科技(Biotechnology)、奈米科技(Nanotechnology)、微(奈)米電子與半導體(Micro- and nanoelectronics, including semiconductor)、光電(Photonics)、及先進材料(Advanced materials)等五大科技,能夠被廣泛的應用在各種產業上,並可協助現有科技作出重大的改善,故在2009年9月歐盟委員會(European Commission)所公布的一份溝通文件(Communication)當中,被認定為是可以加強競爭力,並協助經濟永續發展的關鍵促成技術(Key Enabling Technologies, KETs)。   在該份名為「為我們的未來做準備:發展歐洲關鍵促成技術促進總策略」(Preparing for our future: developing a common strategy for key enabling technologies in the EU)的文件中,歐盟委員會指出,KETs的技術外溢效益和其所能產生的加成效果,可以同時提昇其他領域的表現,如通訊技術、鋼鐵、醫療器材、汽車、及航太等領域,故將對歐盟地區未來的經濟永續發展有著重大的影響,也可以協助面對社會與環境的重大挑戰。   該文件指出,雖然歐盟擁有許多KETs的相關研發成果,對促進研發成果產業化之措施卻有所不足。在此溝通文件中所規劃的發展策略,配合歐盟持續的在研發作出更多的投資,將會協助歐盟充分應用這些可提高歐盟未來競爭力的KETs。   因為KETs的推展須注意系統性的相關聯性,所以數個不同的政策必需被同時考慮。在溝通文件中提出了十項應被考慮的面向,包括(1)將研發政策專注於KETs;(2)促進境內產學研單位間以及產業供應鏈間的技術移轉;(3)促進歐盟與會員國間發展共同的策略方案和操作專案;(4)運用各會員國境內之補助政策;(5)結合KETs的應用與氣候變遷政策;(6)創造市場需求並配合公共採購;(7)與國際間高科技政策相比較並加強國際合作;(8)透過雙邊或多邊貿易談判創造KETs有利的貿易條件;(9)促進歐洲投資銀行(European Investment Bank, EIB)給予高科技產業優惠貸款;以及(10)透過高等教育與在職訓練提昇技術水準。   歐盟委員會將會建立一個獨立的高階專家團體,去繪製歐盟有關各KETs的長期策略藍圖,並將於2010年年底向部長會議(Council of Ministers)報告。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP