為了落實美國2010年公布之21世紀通訊與視訊無障礙法(Twenty-First Century Communications and Video Accessibility Act of 2010,CVAA),讓身障者得以使用新興通訊技術,FCC於今(2013)年4月29日公布第二次報告與命令(Second Report and Order)。本次規範重點在修訂2011年對1934年通訊法(Communications Act of 1934)第716、718條之規範,使通訊服務與設備製造之業者,負擔更多的無障礙義務。
針對第716條,規範消費者終端設備,包括手機、筆記型電腦或平板電腦等,在安裝或具備瀏覽器後,將被視為具有提供先進通訊服務(Advanced Communications Services,ACS)之能力,而須提供身障人士無障礙使用非互連VOIP(non-interconnected VoIP)、電子通訊與視訊會議服務。第二次報告與命令相較於2011年,FCC將消費者終端設備皆納為先進通訊服務,而須承擔無障礙義務,本次規則限縮設備製造商之無障礙使用義務。至於第718條則是要求手機製造商與電信服務商提供之手機,如具有網路瀏覽器,則須能使視障者無障礙使用。例如以語音將網址輸入於地址攔(Address Bar)、或是準確使用工具鍵(例如是回復鍵),增加提供瀏覽器業者(e.g .微軟Google)之義務。
FCC要求2013年10月8日以後生產、提供的設備與服務,皆須符合第716、718條規範,使身障者更得方便使用通訊設備。不過, ACS在下述條件可不受無障礙使用限制:
1.手機無法進行相容。
2.設備為客製化、且未有公開販售。
美國於2010年時超過40%以上的成年人,使用網際網路收發郵件、或獲取即時消息,但是,身障者卻難以享有資通訊的便利性。是故,這次FCC對第716、718條重新闡述,是否能降低美國身障者之數位落差,更能受益於科技的進步,將是未來持續觀察的重點。
世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素 資訊工業策進會科技法律研究所 2025年12月18日 世界衛生組織(World Health Organization, WHO)於2025年11月19日發布「人工智慧正在重塑醫療系統:世衛組織歐洲區域準備情況報告」(Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region)[1],本報告為2024年至2025年於WHO歐洲區域醫療照護領域人工智慧(AI for health care)調查結果,借鑒50個成員國之經驗,檢視各國之國家戰略、治理模式、法律與倫理框架、勞動力準備、資料治理、利益相關者參與、私部門角色以及AI應用之普及情況,探討各國如何應對AI於醫療系統中之機會與挑戰。其中責任規則(liability rules)之建立,為成員國認為係推動AI於醫療照護領域廣泛應用之最重要關鍵政策因素,因此本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,透過救濟與執法管道以保護病患與醫療系統之權益。 壹、事件摘要 本報告發現調查對象中僅有8%成員國已發布國家級醫療領域特定AI策略(national health-specific AI strategy),顯示此處仍有相當大之缺口需要補足。而就醫療領域AI之法律、政策與指導方針框架方面,46%之成員國已評估於現有法律及政策相對於醫療衛生領域AI系統不足之處;54%之成員國已設立監管機構以評估與核准AI系統;惟僅有8%之成員國已制定醫療領域AI之責任標準(liability standards for AI in health),更僅有6%之成員國就醫療照護領域之生成式AI系統提出法律要求。依此可知,成員國對於AI政策之優先事項通常集中於醫療領域AI系統之採購、開發與使用,而對個人或群體不利影響之重視與責任標準之建立仍然有限。於缺乏明確責任標準之情況下,可能會導致臨床醫師對AI之依賴猶豫不決,或者相反地過度依賴AI,從而增加病患安全風險。 就可信賴AI之醫療資料治理方面(health data governance for trustworthy AI),66%成員國已制定專門之國家醫療資料戰略,76%成員國已建立或正在制定醫療資料治理框架,66%成員國已建立區域或國家級醫療資料中心(health data hub),30%成員國已發布關於醫療資料二次利用之指引(the secondary use of health data),30%成員國已制定規則,促進以研究為目的之跨境共享醫療資料(cross-border sharing of health data for research purposes)。依此,許多成員國已在制定國家醫療資料戰略與建立治理框架方面取得顯著進展,惟資料二次利用與跨境利用等領域仍較遲滯,這些資料問題仍需解決,以避免產生技術先進卻無法完全滿足臨床或公衛需求之工具。 就於醫療照護領域採用AI之障礙,有高達86%之成員國認為,最主要之障礙為法律之不確定性(legal uncertainty),其次之障礙為78%之成員國所認為之財務可負擔性(financial affordability);依此,雖AI之採用具有前景,惟仍受到監管不確定性、倫理挑戰、監管不力與資金障礙之限制;而財務上之資金障礙,包括高昂之基礎設施成本、持續員工培訓、有限之健保給付與先進AI系統訂閱費用皆限制AI之普及,特別於規模較小或資源有限之醫療系統中。 就推動AI於醫療照護領域廣泛應用之關鍵政策因素,有高達92%之成員國認為是責任規則(liability rules),其次有90%之成員國認為是關於透明度、可驗證性與可解釋性之指引。依此,幾乎所有成員國皆認為,明確AI系統製造商、部署者與使用者之責任規則為政策上之關鍵推動因素,且確保AI解決方案之透明度、可驗證性與可解釋性之指引,也被認為是信任AI所驅動成果之必要條件。 貳、重點說明 因有高達9成之成員國認為責任規則為推動AI於醫療照護領域廣泛應用之關鍵政策因素,為促進AI應用,本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,並建立相應機制,以便於AI系統造成損害時及時補救與追究責任,此可確保AI生命週期中每個參與者都能瞭解自身之義務,責任透明,並透過可及之救濟與執法管道以保護病患與醫療系統之權益;以及可利用監管沙盒,使監管機構、開發人員與醫療機構能夠在真實但風險較低之環境中進行合作,從而於監管監督下,於廣泛部署前能及早發現安全、倫理與效能問題,同時促進創新。 此外,WHO歐洲區域官員指出,此次調查結果顯示AI於醫療領域之革命已開始,惟準備程度、能力與治理水準尚未完全跟進,因此呼籲醫療領域之領導者與決策者們可考慮往以下四個方向前進[2]: 1.應有目的性地管理AI:使AI安全、合乎倫理與符合人權; 2.應投資人才:因科技無法治癒病人,人才是治癒病人之根本; 3.需建構可信賴之資料生態系:若大眾對資料缺乏信任,創新就會失敗; 4.需進行跨國合作:AI無國界,合作亦不應受限於國界。 參、事件評析 AI於醫療系統之應用實際上已大幅開展,就歐洲之調查可知,目前雖多數國家已致力於AI於醫材監管法規與資料利用規則之建立,據以推動與監管AI醫療科技之發展,惟由於醫療涉及患者生命身體之健康安全,因此絕大多數國家皆同意,真正影響AI於醫療領域利用之因素,為責任規則之建立,然而,調查結果顯示,實際上已建立醫療領域AI之責任標準者,卻僅有8%之成員國(50個國家中僅有4個國家已建立標準),意味著其為重要之真空地帶,亟待責任法制上之發展與填補,以使廠商願意繼續開發先進AI醫療器材、醫療從業人員願意利用AI醫療科技增進患者福祉,亦使患者於受害時得以獲得適當救濟。亦即是,當有明確之責任歸屬規則,各方當事人方能據以瞭解與評估將AI技術應用於醫療可能帶來之風險與機會,新興AI醫療科技才能真正被信任與利用,而帶來廣泛推廣促進醫療進步之效益。由於保護患者之健康安全為醫療領域之普世價值,此項結論應不僅得適用於歐洲,對於世界各國亦應同樣適用,未來觀察各國於AI醫療領域之責任規則發展,對於我國推廣AI醫療之落地應用亦應具有重要參考價值。 [1] Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region, WHO, Nov. 19, 2025, https://iris.who.int/items/84f1c491-c9d0-4bb3-83cf-3a6f4bf3c3b1 (last visited Dec. 9, 2025). [2] Humanity Must Hold the Pen: The European Region Can Write the Story of Ethical AI for Health, Georgia Today, Dec. 8, 2025,https://georgiatoday.ge/humanity-must-hold-the-pen-the-european-region-can-write-the-story-of-ethical-ai-for-health/ (last visited Dec. 9, 2025).
美國食品藥物管理局(FDA)提案更新食品營養標示為了讓美國消費者可以完全明瞭日常購買食品所蘊含的營養內容,美國食品藥物管理局(Food and Drug Administration, FDA)於二月提案更新現行食品營養標示(Nutrition Facts Label)所必須彰顯的營養物內容。本次食品營養標示的調整,主要是針對從最新飲食建議、共識報告與全國調查數據所彙整出的結果,就攸關消費者疾病、健康與日常需求的營養物,重新就標示內容進行調整,以強化食品安全的資訊透明,落實保障消費者在選擇食品的資訊平等地位。以下,將針對本次主要調整事項分別作簡要說明: 在新的食品營養標示中,首先,要求額外列出添加糖(added sugars)的數量,以避免消費者因食用過多的糖分而導致肥胖(obesity)或促發其他疾病的發生;第二,要求更新食品營養物份量(serving size),對於食品營養標示需顯示消費者「實際食用」的份量,而非顯示消費者「可能食用」的份量;第三,要求標示鉀(potassium)與維他命D(vitamin D)的含量,以反應相關報告顯示美國人普遍對於鉀與維他命D有攝取不足的現象;第四,調整不同營養素(例如:鈉、膳食纖維與維他命D)的每日攝取標示,使消費者瞭解食品所含營養素內容;第五,持續要求標示總體脂肪(Total Fat)、飽和脂肪(Saturated Fat)與反式脂肪(Trans Fat),並去除卡路里來自脂肪的標示,以提供消費者攸關其健康更有用的資訊;最後,針對食品營養標示的型式進行調整,強調例如像是卡路里、份量與每日攝取比率之標示,以緩和美國近來日益嚴重的肥胖與心臟疾病等問題。 考量美國公共健康問題日益浮出檯面,FDA近來針對食品營養標示型式與內容進行調整,希望藉由資訊透明化的方式,讓消費者明瞭市售食品營養素是否影響自身健康,以作為挑選食品時的首要考量,進而降低不健康食品對消費者所帶來的危害。鑑於近來台灣食安問題日益嚴重,衛生主管機關是否亟需就食品營養標示,參酌美國或國外規範重新另作檢視,來確保消費者買得放心、食得安心,並吃出健康,則是現行衛生主管機關需另考量的重點。
ENUM服務前景可期? 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。