2010年,蘋果(Apple Inc.)與法商Hachette、美商HarperCollins、美商Simon & Schuster、英商Penguin與德商Holtzbrinck/Macmillan等五家主要出版商訂定協議,改變電子書過往在市場上的銷售模式。過去電子書係由零售商(通常是網路書店)自行訂定銷售價格,而今蘋果與五家出版商透過協議,改由出版商決定電子書在網路書店的銷售價。
歐盟執委會於2011年3月對此展開反競爭(anti-competition)調查,認為這五家書商聯合蘋果公司限制零售書商定價的行為有違反競爭法之虞。根據歐盟運作條約(Treaty on the Functioning of the European Union, TFEU))第101條規定,事業間協議與一致性行為足以影響歐體會員國間交易,且以妨礙、限制或扭曲歐體共同市場競爭為效果或目的者,與共同市場不相容,應予禁止。
2012年9月,除Penguin外,其中四家出版商皆提出和解方案,承諾將終止與蘋果簽訂的代理協議,不再干涉電子書零售商調整電子書零售價格,此外,並同意未來五年內排除「最惠國(Most-Favoured-Nation, MFN)」條款的適用,該條款規定出版商與其他電子書銷售商如亞馬遜的訂價不得低於與蘋果的訂價。排除最惠國條款的適用意味著,未來出版商和零售商協議的電子書價格將能低於蘋果訂價。
英商Penguin日前與歐盟執委會達成協議,決定終止與蘋果公司關於電子書定價的契約,其承諾條件如下:
一、Penguin公司將終止和零售書商間的代理契約。
二、未來兩年內零售書商可自訂電子書價格與折扣,包含Penguin公司出版的書籍。
三、Penguin公司和零售書商的契約也將適用禁止價格最惠國條款,期限5年。
歐盟執委會接受Penguin公司所提出之承諾,並認為此舉將有助於恢復市場的有利競爭環境。本案終能落幕。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
英國資源與廢棄物策略英國環境食品與鄉村事務部於2018年12月18日提出「英國資源與廢棄物策略」(Resources and waste strategy for England),以全面性的角度提出英國對資源與廢棄物的處理政策,包含如何最有效利用資源與最小化廢棄物的產出,追求在2050年達到加倍資源生產力,並禁絕包含塑膠廢棄物在內之可避免廢棄物產生,作為英國推動循環經濟的政策藍圖。 這份政策文件可以區分為三大部分,第一部分為產品的生命週期,包含從製造、消費到生命週期的完結;第二部分為主要議題,聚焦在論證環境犯罪(waste crime)與食物浪費(food waste)此兩大議題並不適用於前述的產品生命週期;並且在第三部分的未來展望上,提出三大面向突破傳統的產品生命週期觀點,包含國際領導(international leadership)、研究創新(research & innovation)與監管措施(data, monitoring and evaluation),建立起資源與產品生命週期的循環,以達到追求最大化資源利用效益與最小化廢棄物產生的目標。 在政策文件當中特別呼應了歐盟塑膠對策(EU Plastic Strategy),強調在英國針對塑膠議題提出的2025指引(The UK Plastics Pact – A Roadmap to 2025)當中,目標在2025年達到消滅無法處理或一次性使用之塑膠廢棄物,使用100%可再利用、回收或可分解之塑膠包材,達成70%的塑膠包材可回收或分解效率,並於塑膠包材中使用30%以上的可再生原料。
英國隱私團體主張eBay違反資料保護法英國隱私團體「隱私國際」( Privacy International ,以下簡稱: PI ),於日前向英國「資訊官長辦公室」提出控告( Information Commissioner's Office ,以下簡稱: ICO ),主張英國 eBay 提供的網路拍賣服務,阻撓使用者刪除註冊之個人資料,構成不公平之個人資料處理,違反英國資料保護法 (Data Protection Act) 。 由於 eBay 針對使用者資料之利用除一般註冊資料維護外,還有一個 VeRO 方案,參與此方案的使用者,其使用者 ID 、姓名、地址、電話號碼、電子郵件信箱以及公司名稱等基本資料將會在 eBay 自行判斷有必要用於調查詐欺、智慧財產權侵害或是其他非法活動時被公開,因此, PI 於聲明中主張,「刪除個人資料」功能與該網站之使用者之利益關聯甚鉅。 而「刪除帳號」項目已為多數網際網路服務所預設的帳號管理功能之一,經由 PI 人員實際使用 eBay 網站,窮盡各種搜尋方法,方於「帳戶資訊與付款」 (account information & billing) 項目找到關閉帳戶的選項, PI 指出,一般合理的使用者無法花費大量時間與方法搜尋網站各項功能, eBay 此一行為明顯是為了該公司之利益特意將該功能加以隱藏,以杜絕多數使用者對該項功能的利用,故向 ICO 提出控告。 PI 並指出,未來將對歐洲、美洲及亞洲各主要網站進行類似的調查。
美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。 於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。 預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。