從英國 NHS 國家 IT 計畫看電子病歷之推動:以病患個人資訊隱私保護為中心

刊登期別
第25卷,第05期,2013年05月
 

※ 從英國 NHS 國家 IT 計畫看電子病歷之推動:以病患個人資訊隱私保護為中心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6397&no=57&tp=1 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
韓國成立國家生技委員會,推動生技三大轉型

韓國政府於2025年1月23日成立國家生技委員會(국가바이오위원회),作為跨部會最高決策機構,整合生技、醫療、食品、能源、環境等領域政策。該委員會將推動《大韓民國生技大轉型戰略》(대한민국 바이오 대전환 전략),聚焦基礎建設、研發創新、產業發展三大轉型,重點分述如下: 1. 基礎建設轉型:韓國將成立「生技聚落協調機構」(바이오 클러스터 협의체),整合20多個生技聚落,讓各聚落共享設備、專家及創業支援,並與全球頂尖生技聚落交流。韓國計畫創造1萬個生技相關就業機會、培育11萬名生技專業人才,並推動生技監管創新。 2. 研發創新轉型:韓國期望透過AI技術應用,將新藥開發的時間與成本減半。此外,政府將提供資料共享的獎勵措施,簡化IRB及DRB審查流程,推動資料導向的生技研發。韓國計畫至2035年在國家生技資料平台上累積1000萬筆生技資料,並建構高效能運算基礎設施以提升分析能力。 3. 產業發展轉型:韓國將透過五個公共CDMO支援生技產業技術產品化,並推動AI導向的「K-BioMADE計畫」,促進生技製造的高速化、標準化與自動化。此外,政府將成立1兆韓元以上的「Mega Fund」,提供金融政策支持。韓國計畫至2032年將CDMO生產能力擴大至2.5倍,確保在全球市場佔據領先地位。 韓國政府擬透過「國家生技委員會」強化公私部門協作、優化法規環境及加速創新技術的商業化,為我國未來生醫政策發展提供寶貴的參考價值,值得持續關注。

日本提出2020年創新願景的期中建言,主張應自未來需求中發掘創新方向

  日本經濟產業省所屬「研究開發與創新附屬委員會」於2020年5月29日統整了有關2020年創新願景的期中建言並作成報告。本次的願景建言,係著眼於日本於IT等領域無法推動新興產業的現狀,且在原本具有競爭優勢的領域上,又因新興國家崛起導致實質獲益降低,加之新型冠狀病毒疫情使經濟活動停滯等結構性變化,產生全球性的典範轉移等問題。故認為應自長遠觀點出發,視「從未來需求中發掘創新價值」的途徑為創新關鍵,化危機為轉機,並同步觀察國內外的動向,針對企業、大學、政府各界應採取的行動,綜整出2020年的期中建言。   本次期中建言以產業為核心,主要包含以下幾個面向:(1)政策:例如,為積極參與新創事業的企業規劃認證制度;透過修正產學合作指引、簡化〈技術研究組合(為成員針對產業技術,提供人力、資金或設備進行共同研究,並為成果管理運用,且具法人格的非營利組織型態)〉設立與經營程序、擇定地區開放式創新據點等手段深化與落實開放式創新;以「創造社會問題解決方案」與「保護關鍵技術」的研發活動為重心,鬆綁相關管制,並調整計畫管理方式等以協助技術投入市場應用;以2025年與2050年為期,就次世代運算(computing)技術、生化、材料與能源領域提出科技與產業發展的願景;藉由改善人才制度、數位轉型等方式,強化企業研發能量;(2)「從未來需求中發掘創新價值」概念:現行研發與導向商品化的模式,主要以既有的技術、設備等資源為基底,進行線性且單向的創新研發,重視短期收益與效率化,使成果應用未能貼近社會的實際需要,故未來應在此種模式之外,另從創造社會議題解決方案與切合未來需求的觀點出發,結合既有技術資源來擬定長期性的研發創新戰略並加以實踐;(3)產官學研各界角色定位與任務:大學與國立研發法人應強化其研發成果之商轉合作,調整課程內容以削減知識與人才產出不符合社會議題需要的問題;企業的創新經營模式,則應透過ISO56002創新治理系統標準、日本企業價值創造治理行動指針(日本企業における価値創造 マネジメントに関する行動指針)等標準實踐,擴大開放式創新的應用;政府則應採取調整稅制、建置活動據點等方式,建構並提供有利於開放式創新的環境,並針對產業發展願景中的關鍵領域(如感測器等AI應用關聯技術、後摩爾時代(post moore's law)運算技術、生化技術、材料技術、環境與能源技術等)進行投資。

美國確立2305-2360MHz區間行動寬頻服務發展規範

  自2001年以來,美國長期無法解決2305-2360MHz頻段上,相鄰之衛星數位音訊廣播服務(Satellite Digital Audio Radio Service, SDARS)業者與無線通訊服務(Wireless Communications Service,WCS)業者雙方相互干擾之疑慮。此一爭議在2012年10月17日美國聯邦通訊委員會(FCC)發布FCC 12-130再審查命令(Order on Reconsideration FCC 12-130,下稱12-130命令)後獲得解決。   使用頻段位於2305-2320MHz與2345-2360MHz之無線通訊服務(WCS)與位於2320-2345MHz頻段的衛星數位音訊廣播服務(SDARS)由於個別之訊號傳輸技術差異大,並且長久以來無法在干擾處理的議題上達成共識,而抑制了無線通訊服務(WCS)於該頻譜上之發展。為實現WCS業者得於該頻段發展行動寬頻業務之承諾,並確保美國大眾能繼續享有高品質的衛星廣播服務,FCC本次針對2010年所頒布之命令(FCC10-82)進行再次修訂與檢討 ,以確立位於2.3GHz頻帶WCS所屬之頻段得發展新興寬頻服務,並促進SDARS地面中繼起器(terrestrial repeaters)之佈署及運作更加彈性化。   12-130命令之頒布,可視為WCS頻帶發展的重要里程碑。該命令除了確保相鄰頻帶之衛星廣播服務(satellite radio)、航空行動遙測技術(aeronautical mobile telemetry)以及位於美國加州所佈署之深空網路(deep space network)地面站其訊號不受干擾以外,FCC更透過制訂各項參數與管理規則,一方面降低WCS營運時對於SDARS接收者可能產生的潛在干擾,另一方面則幫助位於2.3GHz的WCS業者有能力提供固定或行動寬頻服務,以促進WCS業者與SDARS業者和諧共存。   對於FCC最後決定採用修改管制規範方式釋出該頻段以發展行動寬頻服務之舉,FCC主席Genachowski表示,除有助於鞏固美國身為全球發展LTE技術領導者之地位外,更認為命令中的管制障礙排除模式可幫助未來其他頻段的清理或移頻,增加頻譜使用彈性,並有助於達成國家寬頻計畫(National Broadband Plan’s)所設定之「2015年釋出300MHz總頻寬」、「2020年釋出500MHz總頻寬」目標。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP