美國總統歐巴馬於2014年初對於美國專利改革及產業創新的規範做進一步的聲明。美國近年來針對專利法改革有許多大規模的法案實施,目的希望能提升整體美國產業,包括2011年通過的美國發明法案(Leahy-Smith America invents Act, AIA),目的希望能讓美國專利系統更加完善,保護專利權人及促進產業創新等目的。然許多專利仍被NPE或是專利蟑螂控訴侵權,反而讓專利權被用來當做專利訴訟的一個工具,花費更多的經費在訴訟及和解上,有違當初白宮要進行專利改革的初衷。
因此歐巴馬在年初為了能鼓勵創新及增加專利系統的品質而發布幾點執行聲明(executive actions):
1、著重prior art的檢索:USPTO開始著重prior art的搜尋,幫助專利審查能更詳盡。
2、增進專利審查人的技術訓練:提供教育專業訓練,讓專利審查人能隨時更新最新的技術,能在審查過程中對於技術上的認知能更專業。
3、Pro brono幫助:USPTO提供pro brono的幫助。許多發明人對於如何申請專利及如何使其專利被妥善保護等規範較缺乏相關資訊、或沒有資金聘請顧問協助此方面保護,因此USPTO會提供教育及實務訓練,讓這些較小的公司或資源較缺乏之發明人的專利得以獲得保護。
本文為「經濟部產業技術司科技專案成果」
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。
歐盟執委會發表數位政府有助於因應COVID-19疫情之說明歐盟執委會(European Commission, EC)於2020年3月24日發表新聞稿,說明在COVID-19疫情期間,各國政府要求人民保持社交距離甚或自我隔離;人民無法會面互動下,數位政府政策成為維持正常生活的解套方式。歐盟於新聞稿中重申先前建構「歐盟內部市場電子交易之電子身分認證與信賴服務規則」(REGULATION EU No 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing Directive 1999/93/EC,以下簡稱 eIDAS)、電子識別(electronic identification, eID)以及發展信任服務(trust services)的必要性,例如電子戳記(eTimestamps)、電子圖章(eSeals)、電子簽章(eSignatures)、網站認證(Website authentication)等均屬之。歐盟公民無須離開住宅,即可和公部門互動。 除了公部門,信任服務可以支援歐盟企業(特別是疫情嚴重地區的中小型企業)遠端執行業務,維持業務連續性。例如金融服務對交易、認證、安全性及防洗錢等領域發展數位化:eID識別客戶身分、整合同一客戶的海外金融帳戶服務、遠端驗證防洗錢要求;電子簽章可與客戶遠端簽署金融服務契約;電子註冊交付服務(electronic registered delivery service)則作為安全交換重要文件或契約之機制。 在零售業而言,安全的電子交易對於線上業務尤為重要。例如eID可對購買酒類等管制商品或藝術品等高價商品之消費者進行更嚴格的身分檢查;電子簽章和電子戳記則強化文件及流程追蹤機制,降低追蹤成本。 在運輸部門,以汽車共享服務為例,eID可用於證明客戶的身份,提供安全登錄,並允許客戶進行遠端車輛解鎖。而貨運及物流產業,若在不同營運商運送之間遇有延遲,則電子戳記可使責任歸屬更加明確。另外,對重要文件使用電子圖章,可證明文件完整性、有效性並減少對紙本文件的依賴,並降低疫情期間會面之風險。
美國聯邦地方法院駁回臨床試驗軟體公司Medidata對競爭對手Veeva的營業秘密訴訟美國紐約南區聯邦地方法院(S.D.N.Y.)於2022年7月15日駁回了臨床試驗軟體公司Medidata Solutions Inc. (以下簡稱Medidata公司)控告競爭對手Veeva Systems Inc. (以下簡稱Veeva公司)竊取其營業秘密的請求。 原告Medidata公司於2017年1月指控被告Veeva公司陸續挖角其數名離職員工,部份員工離職時私自拷貝公司檔案,其中包含原告的產品研發、商業策略等營業秘密,而被告根據這些資訊開發了和原告相似的軟體,造成其重大損害,因此向被告請求4.5億美元的損害賠償。 被告Veeva公司抗辯雖然這些員工離職時私自保留原告的檔案,但原告在訴訟中並未明確說明哪些屬於該公司的營業秘密,亦即未特定營業秘密標的;此外,即便這些離職員工自行保留的檔案中有包含原告所稱之營業秘密,但原告提出的證據不足以證明被告有不當取用(misappropriation)其營業秘密,僅根據被告有僱用原告離職員工等事實,即推論被告有不當取用。原告試圖透過此模糊和毫無根據的主張,限制產業的創新、競爭、人才流動。 本案歷經五年的纏訟,法院最終駁回原告請求。法官指出,原告在整個訴訟過程中並未明確定義哪些資訊屬於營業秘密,原告似乎認為任何資訊皆屬於其營業秘密,這樣的主張無異於代表任何公司永遠無法挖角其他公司的員工,因為這些員工到新公司任職後所說的任何話,都會間接地揭露他們在之前工作中所學習到的事情,因此駁回原告之訴。 從本案可以觀察到,企業應定期盤點公司內部資訊,明確界定營業秘密範圍,並落實管理及妥善留存相關證據,發生侵害營業秘密爭議時才能有效舉證。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」