2014年2月12日,美國發表「網路安全框架(Cybersecurity Framework)」,該框架係由美國政府、企業及民間機構花費一年的時間共同發展而成,其蒐集了全球現有的標準、指引與最佳實務作法,最後由國家標準技術局(National Institute of Standard and Technology, NIST)彙整後所提出。
本框架主要可分成三大部份:
1.框架核心(Framework Core)
框架核心包括辨識(Identify)、保護( Protect)、偵測( Detect)、應變( Respond)、與復原( Recover)等五項功能。這五項功能組成網路安全管理的生命週期,藉由這五項功能的要求項目與參考資訊的搭配運用,可使組織順利進行網路安全管理。
2. 框架實作等級(Framework Implementation Tiers)
共分成局部(Partial)、風險知悉(Risk Informed)、可重複實施(Repeatable)、合適(Adaptive)四個等級。組織可以透過對風險管理流程、整合風險管理計畫以及外部參與等三個面向的觀察,瞭解組織目前的安全防護等級。
3. 框架側寫(Framework Profile)
框架側寫係組織依照本框架實際操作後所產出的結果,可以協助組織依據其企業需求、風險容忍度,決定資源配置的優先順序,進一步調整其網路安全活動。
此一安全框架旨在提供整體規劃藍圖予尚未建立網路安全架構的組織參考,而針對已有建立網路安全架構者,該框架並未意圖取代組織原先的風險管理程序和網路安全計畫,而係希望協助公、私部門改善資通訊科技和工業控制系統風險管理的能力。
管制全球溫室氣體排放以遏制全球暖化的京都議定書在二月十六日生效,環保署將著手推動溫室氣體管制法的法制作業工作,目前正研擬溫室氣體管制法,規劃將由中央主管機關擬訂「全國溫室氣體防制基本方案」,同時確立政府各部門、企業及國民溫室氣體減量合作及分工;並規範推動國家溫室氣體盤查、登錄及排放清冊建置;授權訂定排放管制、財稅誘因及排放交易制度;推動溫室氣體減量技術研發等;同時推動教育宣導、推廣及鼓勵使用高能源效率產品與節約能源生活方式。 環保署署長張祖恩強調,雖然現有京都議定書條文中沒有貿易制裁或違約罰款的條款,但在合作共生的理念下,我國沒有理由當一個國際溫室氣體減量列車的搭便車乘客(free rider),應在公約精神下,積極推動節約能源、再生能源開發、提昇能源效率等工作。 環保署已於2004年度起首度整合產業、運輸及住商部門領域,辦理溫室氣體盤查管理工作,建立盤查規範登錄平台,積極推動國際標準組織ISO14064驗證系統,並遴選電力、石化、鋼鐵、造紙、水泥、光電半導體等業別12家示範廠商,推動6種溫室氣體全面盤查及減量工作,其中排放大戶台灣電力股份有限公司、中國鋼鐵股份有限公司、中國石油股份有限公司均已參與環保署試行盤查減量計畫。對於溫室氣體排放持續成長的住商部門,環保署協調相關部會規劃成立技術服務團,輔導既有建築物推動節約能源及提昇能源效率工作;對於運輸部門,除持續推動大眾運輸系統外,環保署將與相關部會加強推動油電混合小客車之引進。
歐盟執委會通過《歐洲互通法案》,以強化歐盟公共部門的跨境互通與合作歐盟執委會於2022年11月21日通過《歐洲互通法案》(Interoperable Europe Act)(下稱本法案),以強化歐盟公共部門的跨境互通與合作,加速數位化轉型。跨境互通將使歐盟及其成員國為公民與企業提供更優良的公共服務,並預計為公民節省550萬至630萬歐元的成本;為與公共行政有業務上往來的企業節省57億至192億歐元的成本。 《歐洲互通法案》為歐盟的公部門建立一套合作模式,該模式有助於建立安全的跨境資訊交換及可互通的數位共享解決方案(如開源軟體、指引、IT工具等),使彼此之間合作更有效率,進而帶動公部門創新。舉例而言,Covid-19疫情期間,互通性政策使醫院間得共享重症監護病床之數量資訊,以提供人民最即時的醫療資源。本法案架構如下: 1.結構化的歐洲合作:由歐盟成員國和區域、城市共同合作,制定跨境互通的共同戰略議程,並得到公共和私人的支持,實施互通性解決方案與進度監控。 2.強制性評估:評估跨境互通之IT系統對歐盟的影響。 3.共享和再利用解決方案:透過歐洲入口網(Interoperable Europe Portal)及社群合作的一站式平台,提供支持共享與再利用的解決方案(如開源軟體)。 4.提供創新和相關支持措施:包括監理沙盒(sandboxes)、GovTech計畫及訓練措施等。 自2010年以來,歐洲互通性框架(European Interoperability Framework, EIF)一直作為歐盟互通性政策的主要參考依據,惟始終不具有約束力。本法案將使EIF成為單一參考依據,使歐盟公共服務部門擁有互通性政策,並未來互通性合作框架將由歐洲互通委員會(Interoperable Europe Board)指導,該委員會由歐盟成員國、歐盟執委會、地區委員會(Committee of the Regions)及歐洲共同體經濟和社會委員會(European Economic and Social Committee)之代表組成。 可互通的數位公共服務對建構數位單一市場至關重要,除提升經濟效益和行政效率外,案例研究亦表明,互通性對提高政府信任可產生正面積極影響,同時本法案充分尊重現有的隱私與資料保護規則,以符合歐盟創建以人為中心的規範方法,提升個人基本權利。
英國上議院對於自動駕駛車運作環境及應備法制規範展開公眾諮詢英國上議院科學及科技委員會(The House of Lords, Science and Technology Committee)於2016年9月15日對於自動駕駛車(Autonomous Vehicles)的運作環境與應備法制規範展開公眾諮詢,委員會邀請利害相關的個人和團體提交書面文件來回應此公眾諮詢。書面意見提交的最後期限是2016年10月26日。 英國政府一向對發展自動駕駛車的潛力十分積極,其在2015年建立了一個新的聯合政策單位-聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV),並在2015年財政預算案中提供CCAV一億英鎊的智慧行動研發基金聚焦於無人駕駛車技術。CCAV還公佈現有與車輛交通相關立法的調查報告,其結論是:「英國現有的法律架構和管制框架並不構成自動駕駛車在公路上測試的阻礙。」此外,CCAV還出版了無人駕駛汽車測試的實務守則。在2016年英國女王的演講中,政府宣布將制訂現代運輸法案(Modern Transport Bill):「確保英國處在最新運輸科技的尖端,包括自動駕駛和電動車。」 2016年7月,CCAV舉辦了英國的聯網與自動駕駛車的測試生態系統的公眾諮詢,以及於2016年9月發佈個人和企業對於在英國使用自動駕駛車技術和先進輔助駕駛系統的公眾意見徵詢。 本次公眾諮詢將調查政府所採取的行動是否合適,是否有兼顧到經濟機會和潛在公共利益。在影響與效益方面,本次諮詢將收集自動駕駛車的市場規模與潛在用途、對用戶的益處與壞處、自動駕駛車對不同產業的潛在衝擊以及公眾對於自動駕駛車的態度等相關證據。在研究與開發的方面,自動駕駛車目前的示範計畫與規模是否足夠、政府是否有挹注足夠的研發資金、政府研發成果的績效以及目前研發環境是否對中小企業有利等面向,找尋傳統道路車輛是否有和自動駕駛車輛並存的過渡轉型方法。最後,布署自動駕駛車是否需要提升軟硬體基礎設施、政府是否有建立資料與網路安全的方法、是否需要進一步的修訂自動駕駛車相關法規、演算法及人工智慧是否有任何道德問題、教育體系是否能提供自動駕駛車相關技能、政府制訂策略的廣度;以及退出歐盟是否對英國研發自動駕駛車產業有不利之影響;而英國政府是否應在短期內做出保護該產業之相關措施,或是待Brexit條款協商完成之後再視情況決定等等。 上述議題在書面意見徵集完成之後,將於2016年11月召開公聽會再度徵集更廣泛的相關意見,科學及科技委員會希望能在2017年初做成調查報告並提交給國會,在得到政府回應之後,可能將進行辯論以決定未來英國自動駕駛車產業的發展方向。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。