紐西蘭科學與創新大臣Steven Joyce與食品安全大臣Nikki Kaye,於今年(2014)4月16日宣佈該國將設置食品安全科學研究中心以因應食品安全危機。該中心預計於本年底前建成並投入使用,該國政府和產業界每年將聯合資助至少紐西蘭幣500萬元。該中心是為了促進、協調和提供食品安全科學與研究,並將提供食安相關科研補助,主要聚焦於涉及公共利益的食品安全科學和研究活動,涵蓋食品的整個價值鏈。
包括:
1.生物、化學、物理和放射性的食品安全風險;
2.與食品添加物質相關的風險;
3.食品安全的風險評估、管理及與公眾的良好溝通;
4.與國際科學界和現有的國際研究平臺展開合作。
紐西蘭食品安全科學研究中心起因自去年紐西蘭發生濃縮乳清蛋白受汙染事件,嚴重影響該國畜牧業外銷,為防範類似事件再發生,去年底政府研究報告指出29項改善目標,其中即包括設立該中心。
該中心成立後首先將徵求合作對象。紐西蘭商業、創新與就業部,初級產業部兩部會於2014年4月16日聯合發布合作意向徵求通知,有意承辦或者加盟中心的研究機構可以參加競標。商業、創新與就業部之科學委員會將負責遴選合作對象,得參加5月末食品安全科學研究中心合作研討會。同時,將徵求食安相關科研補助專案。兩部會在7月初,將向前述入選者發佈提案募集通知,特別鼓勵聯合提出專案申報書,後續將由獨立專家組成的委員會對其進行評估,最後由科學委員會做出補助決定。
本文為「經濟部產業技術司科技專案成果」
2010年,美國聯邦政府展開「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,FedRAMP),在經過2年的研究與整備後,聯邦政府總務管理局於2012年06月06日宣佈FedRAMP正式運作。 FedRAMP是由國土安全部、聯邦政府總務管理局、國防部、國家安全局以及國家科技研究所共同撰寫及建置。該計畫的目的是建立一套全國政府機關可遵循依據,針對雲端服務的風險評估、授權管理的標準作業規範。 根據FedRAMP,雲端服務業者欲通過該計畫的評估,其評估程序可分為提出申請、檔案安全控管、進行安全測試、完成安全評估等四個階段。未來所有雲端產品與服務業者,都必須達到該計畫的標準規範,才能為美國政府機關提供雲端產品及服務。 對於雲端服務業者的評估,必須經由FedRAMP認證的第三方機構來進行審查,第三方評估機構欲通過認證,除了要符合FedRAMP的需求外,還必須具備雲端資訊系統的評估能力、備妥安全評估計畫、以及安全評估報告等,另外亦同時引進了ISO/IEC17020以及ISO/IEC17011之規定,來驗證檢驗機構的品質與技術能力。目前為止,聯邦政府總務管理局已經公佈十個獲得授權的機構。 聯邦政府總務管理局同時並期待在2012年的年底之前,能夠有三個雲端服務提供者通過審查,然而,由於制度才剛上路不久,是否能夠跟上產業變遷的腳步並順利達成目標,仍有待進一步觀察。
美國國土安全部發布「2024人工智慧路線圖」,確保AI安全開發與部署美國國土安全部(Department of Homeland Security, DHS)於2024年3月17日發布「2024人工智慧路線圖」(2024 Artificial Intelligence Roadmap)(下稱AI路線圖),設立三大目標,將偕同旗下機關與產官學研各界合作,確保AI的安全開發與部署,保護國家關鍵基礎設施安全,以強化國家安全。 美國拜登總統於2023年10月30日簽署的第14110號總統行政命令《安全可靠且值得信賴的人工智慧開發暨使用》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)(下稱AI總統行命令),要求DHS應管理使用於關鍵基礎設施與資通安全的AI、制定全球AI標準並推廣、降低利用AI造成具有大規模殺傷力武器攻擊之風險、保護AI智慧財產權、以及吸引AI領域人才,以促使、加強AI開發與部署等事項。為踐行上述事項,DHS制定AI路線圖,其三大目標如下: (1) 負責任的使用AI以推進國安任務(Responsibly Leverage AI to Advance Homeland Security Mission):透過建置AI基礎建設、建立AI系統測試與評估(Testing and Evaluation, T&E)、推動AI人才培育計畫等行動措施,帶領主管機關負責任的使用AI,以保護國家安全及避免AI對關鍵基礎設施的風險,確保AI於使用過程中係尊重個人隱私、保護公民權利與自由。 (2) 促進AI安全與資安(Promote Nationwide AI Safety and Security):利用AI技術改善與預防關鍵基礎設施之安全與資安風險、制定關鍵基礎設施之AI使用指引、以及成立AI安全與資安委員會(AI Safety and Security Board, AISSB),彙集產官學研各界專家意見。 (3) 透過擴大AI國際合作來引領AI發展(Continue to Lead in AI Through Strong, Cohesive Partnerships):將透過與產官學研各界合作,擴大AI的國際合作,並持續與公眾進行意見交流與分享,推廣AI政策或相關行動措施;DHS亦將持續與參眾議院及其他主管機關匯報AI相關之工作進度與未來規劃,以提升部門AI的透明度,並建立公眾對AI的信任。
日本人工智慧(AI)發展與著作權法制互動課題之探討日本著作權法第2條第1項第1款規定對著作物定義中,創作性之表現必須為具有個人個性之表現,日本對於無人類行為參與之人工智慧創作物,多數意見認定此種產品無個性之表現,非現行著作權法所保護之產物。人工智慧之侵權行為在現行法的解釋上,難以將人工智慧解釋其本身具有「法人格」,有關人工智慧「締結契約」之效力為「人工智慧利用人」與「契約相對人」間發生契約之法律效果。日本政府及學者對人工智慧之探討,一般會以人工智慧學習用資料、建立資料庫人工智慧程式、人工智慧訓練/學習完成模型、人工智慧產品四個區塊加以探討。日本政策上放寬著作權之限制,使得著作物利用者可以更加靈活運用。為促進著作之流通,在未知著作權人之情況下,可利用仲裁系統。在現今資訊技術快速成長的時代,面對人工智慧的浪潮,日本亦陸續推出相關人工智慧研發等方針及規範,對於爾後之發展值得參酌借鏡。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。