歐盟法院(ECJ- the Court of Justice of the European Communities)於11月28日針對Intel v CPM一案宣告,對於著名商標侵害的認定參考英國上訴法院(the Court of Appeal-England and Wales)的初審裁定「著名商標持有人得中止近似商標使用於完全非類似的產品或服務上,只要能舉證近似商標之使用造成對著名商標持有人的侵害並有實質的經濟影響」。 本案原告為Intel Corporation Inc. 註冊「Intel」為英國商標,指定使用於第9類電子商品、第16類文具商品、第38類通訊服務、及第42類電腦軟硬體設計服務,其中並在電腦微處理器及軟體等電子產品上更為全球知名的商標;CPM united Kingdom Ltd. 註冊「INTELMARK」為英國商標,指定使用於第35類的行銷及遠距行銷等廣告服務,Intel主張CPM使用INTELMARK為商標將有致侵害及淡化Intel商標的使用,並產生不正利益。惟英國商標局(Trade Mark Registry Hearing Officer)駁回Intel之申請案,且英國上訴法院初審判決維持原判,並向歐盟法院提出著名商標認定標準。 歐盟法院此次對著名商標的認定,將使著名商標持有人以後如果要保障其商標名稱不被稀釋,必須提出下列證明:1. 前商標(即著名商標)與後商標(近似商標)間必須有一定的關聯性;2. 後商標會使一般消費者產生對前商標的聯想;3.前商標與後商標所註冊的商品間並不一定要類似;4.後商標的使用造成不正利益或侵害前商標持有人的商譽。 本案將待英國上訴法院判決宣判後確定。
談我國基因改造生物田間試驗管理規範之現況與修正方向 英國OFCOM計畫推出適用於不同內容之分級識別標誌英國財政大臣Gordon Brown在倫敦的一場演講中指出,OFCOM現正研擬制定一套適用於各種不同媒介之內容的分級識別標誌。未來不論電視節目、廣播節目、電影、電腦遊戲或者網站內容都可適用該分級識別系統,以幫助父母為家中的孩童過濾不適當的內容,保護孩童在數位化的時代仍可以遠離不適合的媒體內容。 在該場演講中,Gordon Brown 表示,身處在數位時代,父母越來越難掌握孩童所接觸的內容是否適當,但是在無法扭轉科技的進步前提下,應當善加利用新科技並使父母得以透過各種新科技繼續保有為孩童選擇適當的內容之控制權。 OFCOM的發言人僅透露該套分級識別系統不僅適用於所有種類的媒體內容,而且將以文字方式描述各種內容,例如特定內容之裸露程度為何,以作為視聽大眾決定是否接收該內容前的參考。另外,不同於現行的電影分級制度乃是以年齡作為不同等級內容的分級標準,未來OFCOM所推出的分級識別系統將無關乎年齡。不過OFCOM亦表示該分級識別系統的詳細內容目前尚未決定,仍在討論階段。 除了制定一套適用於所有內容的分級識別系統之外,OFCOM未來亦將透過電視廣告以及要求ISP業者配合向消費者宣導各種過濾軟體,以便消費者得以過濾網路上之色情猥褻或暴力之內容。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。