美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。

  美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。

  與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。

  但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

相關連結
相關附件
※ 美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6621&no=57&tp=1 (最後瀏覽日:2024/11/22)
引註此篇文章
你可能還會想看
個人資料保護脈絡下的「綑綁式同意」

歐盟支付服務指令修正案(PSD2)於2016年1月12日生效

  2012年歐洲議會發表的綠皮書「邁向信用卡、網路以及手機支付的整合歐洲市場(Towards an integrated European market for card, internet and mobile payments)」,並進行廣泛的公眾意見徵詢,舉辦公聽會,最後決議進行現有歐洲支付法制架構的修正。歐盟支付服務指令修正案(revised Payment Service Directives, PSD2)於2013年7月由執委會提出,2015年10月歐洲議會通過,今年1月12日生效,預期英國、保加利亞、丹麥、德國、奧地利以及法國將會率先修正原有的支付服務法制完成轉換。產業界一致對於修正案表示歡迎,因為本次修正將會大幅提升支付創新應用的發展可能,尤其是行動支付。   PSD2之重大修正包含針對支付服務的內容作出修正,新增第三方支付服務提供人(third party payment service provider,簡稱TPP)為支付服務之內容(附件一第7項)。TPP的內涵為透過對於其它支付服務提供者的支付帳戶的存取,提供包含支付發動服務(payment initiation services)以及帳戶資訊服務(account information services)。依照第58條規定,TPP服務提供者具備下列義務: 1.確保支付服務使用者的個人化安全資訊不會被其它人取得。 2.以明確的方式向帳戶之支付服務提供者認證自己的身分。 3.不儲存支付服務使用者的敏感支付資訊或個人化安全憑證。   除此之外,PSD2明確將純粹的技術服務提供者排除於支付機構之範圍,無需適用支付服務指令。   PSD2亦授權EBA發布相關規定制定技術門檻,包含強力的客戶身分認證以及通訊資訊標準。

英HFEA同意該國婦女利用PGD技術「訂製嬰兒」

  現今生殖醫學進步相當快速,透過諸如胚胎殖入前之基因診斷( PGD )、組織配對( tissue match )等新興生物技術,人們將有能力選擇未來孩子的外表、智力、健康甚至性別等,故就現今的科技發展而言,篩選具有某種特徵之嬰兒的技術能力早已具備,反而是相關的倫理、道德及社會共識等等卻是最難的部分,這也是有關「訂製嬰兒」( design babies )之爭議焦點。   近幾年,訂製嬰兒的討論在英國非常熱烈,在英國,人工生殖之進行應依人工生殖與胚胎學法規定,獲得 「人類生殖與胚胎管理局」 ( Human Fertilization and Embryology Authority, HFEA )之許可,至於進行人工生殖之同時,父母親是否得附加進一步的條件以「訂製嬰兒」,則一直有爭議。英國高等法院在 2002 年 12 月 20 日的一項判決中曾認為,國會制訂人工生殖與胚胎學法之目的,乃是在協助不孕婦女能夠生兒育女,至於組織配對的行為,則不在該法授權目的之內,因此 HFEA 無權就此等行為給予准駁。惟 2003 年 4 月 8 日 ,上訴法院推翻了高等法院的判決結果,但也進一步指出,這並不代表未來所有在進行 PGD 的同時加做組織配對之行為都是被允許的,想要施行這項技術之任何人,仍然需於事前取得 HFEA 的許可,新近 HFEA 已放寬管制規範,准許對更多種遺傳性疾病進行篩檢。   英國泰晤士報最近報導,一名英國女子已獲得英國 HFEA 同意 ,讓醫師將其透過體外受精方式培養出來的胚胎,利用基因篩檢技術,選擇出健康之胚胎植入其子宮內,以避免將她所罹患的遺傳性眼癌「視網膜母細胞瘤」基因傳給下一代。   本案婦女雖經 HFEA 同意「訂製嬰兒」,但仍會使「胚胎殖入前之基因診斷」( PGD )程序的爭議加劇,反對人士堅稱,基因篩檢的過程中勢必摧毀部分胚胎,且 為了某些目的而製造胚胎,將使人類被商品化,被訂製之嬰兒在長大成人後,若得知其出生之目的乃是在於治療其它親人,其心裡會對自己產生懷疑,並影響對自己人格的認同與其心理狀態。隨著生物技術發展飛快,許多可能背離社會良俗的行為恐將不斷出現,而法規能否隨之跟上則是生技產業能否興盛與倫理道德可否兼顧之重要關鍵。

OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告

經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。

TOP