在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。
美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。
與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。
但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
瑞士聯邦委員會於2022年3月30日,發布了一份關於推進可信的「資料空間」(Data Spaces)與「數位自決權」(Digital Self-Determination)報告。此份報告旨在強調資料是數位時代下創造價值的基礎,為了更好地運用資料的潛在價值,呼籲各界採用新的資料使用概念,加強資料所有者(Data Owner)或資料控管者(Data Controller)對於資料的控制,以「數位自決權」為核心,透過科學技術與法律制度,進一步為實踐「資料共享」(Data Sharing)提供一個安全、便捷、自主、開放、公平而值得信賴的「資料空間」。 值得注意的是,透過該報告,聯邦委員會指示聯邦外交部(FDFA)與聯邦環境、運輸、能源和通訊部(DETEC)實施多項措施,以期能在2023年6月份之前,制定一部由所有利害關係人參與的可信賴資料空間操作之自願行為準則。 此外,該報告列舉出當下對於充分發揮資料潛力所存在的障礙,包括: 資料愈趨集中於大企業手中,且多基於自身目的而使用。 私人和公共服務的提供者在資料的使用上存在多種障礙,例如:資源不足、缺乏專業知識以及擔心競爭劣勢。 社會對於資料的使用態度轉趨保守,無論是擔心資料被濫用而侵犯隱私,或是缺乏資料共享的動機。 該報告更進一步指出資料流通的跨國性,因而有必要創建值得信賴且國際兼容的資料空間,為此亦須建立可信賴資料空間的國際準則,以在國際間形成法律確定性。 觀諸我國個人資料保護法第1條便明確指出,本法制定的目的不僅是為了保護個人資料以及相應之人格權與隱私權,而是更進一步欲透過個人資料管理制度的建構與落實,健全社會及商業互信,以期達成資料的合理利用、創造價值並促進公共福祉的終極目標。 關於我國的資料共享體制,現階段主要從金融機構間開始萌芽,未來如何以數位自決權為基礎,同時在充分保障資訊安全的前提下,擴及其他產業並接軌國際,有賴更多科技與法制的創造與積累、外國經驗的借鑑以及國際參與,而台灣近日以創始會員身分加入「全球跨境隱私規則論壇」(Global Cross-Border Privacy Rules Forum)即為著例。
人工智慧採購指南草案人工智慧作為一前瞻性技術,運用於公部門,可以降低成本、提高管理品質、節省基層公務人員時間,整體改善政府公共服務。然而AI技術進化以及市場發展過於快速,現有採購類型沒有可以直接適用AI採購的判斷標準範本。因此,英國人工智慧辦公室(Office for Artificial Intelligence)與產官學研各界進行研商後,於2019年9月20日發表人工智慧採購指南草案(Draft Guidelines for AI procurement),作為公部門採購AI產品與服務之準則。該指南旨在加強公部門採購人員能力、協助採購人員評估供應商,讓廠商可以隨之調整其產品和服務內容。 該指南提供採購人員規劃政府AI採購的方向,包含招標、公告、評選、決標到履約。但指南強調無法解決採購AI產品與服務時遇到的所有挑戰。 指南內容簡述如下: 在制定規範時應重視如何清楚闡述面臨到的問題,而非只是說明解決方案; 評估AI帶來的風險時應緊扣公共利益,在招標階段敘明以公共利益為核心,並有可能在招標、評選和決標階段變動評估標準; 在招標文件中確實引用法規和AI相關實務守則; 其他包含將AI產品的生命週期納入招標和履約考慮、為提供AI產品和服務的廠商創造公平競爭環境、需與跨領域的團隊進行採購討論、確保採購流程從一開始就建立資料管理機制等。
加州立法機關提出社群媒體青少年成癮法草案,促進兒童身心福祉社群媒體是溝通資訊之重要工具。但部分社群媒體向用戶投放易使人成癮的資訊,對兒童和青少年福祉形成重大風險。據此緣由,美國加州立法機關於2024年1月29日提出社群媒體青少年成癮法草案(Social Media Youth Addiction Law),規定社群媒體除非能合理確定用戶非未成年人,或取得未成年用戶家長同意,否則不得向用戶提供易使人成癮的資訊。 該草案將網路或應用程式中,依用戶特徵或習慣,優先顯示的多片段資訊,定義為易使人成癮的資訊(addictive feed)。除非該資訊符合以下例外條件: (1) 用戶用以搜尋資訊的關鍵字不會被使用的設備記憶,且該資訊與用戶過去的社群媒體使用行為無關。 (2) 是因用戶隱私設定、設備規格、未成年人限制而呈現的資訊。 (3) 是因用戶明確要求而提供,且不易使人成癮的資訊。 (4) 是用戶間直接且非公開之通訊組成的資訊。 (5) 是同一資訊來源,且在音檔或影片形式下,不會自動連續播放的資訊。 該草案亦規定投放易使人成癮資訊的社群媒體,不得在深夜至凌晨時段、上學至放學時段,以及開學期間的週一到週五,向未成年用戶發送通知,除非已取得未成年用戶家長同意。 最後,該草案規定投放易使人成癮資訊的社群媒體每年向公眾揭露未成年用戶總數量、家長同意接收易成癮資訊的未成年用戶數量等資訊。該規定有利大眾監督社群媒體對法規之遵循情況,並促進社會對兒童、青少年身心健康的關心。