在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。
美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。
與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。
但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
網路安全資訊分享法案(Cybersecurity Information Sharing Act,CISA)於2015年10月27日在「參議院」通過。接著眾議院於12月18日通過1.15兆美元的綜合預算法案,並將網路安全資訊分享法案夾帶在預算案中一併通過,最後美國總統歐巴馬亦在同日簽署通過使該法案生效,讓極具爭議的網路安全資訊分享法案偷渡成功。 網路安全資訊分享法案,建立了一個自願性的網路資訊安全分享之框架,其主要內容,在讓美國民間企業遭受網路攻擊或有相關跡象時,得以分享客戶個人資訊予其他公司或美國國土安全局等相關部門,同時並讓民間企業免除向公務機關洩漏客戶個資隱私等相關之法律責任。該法案目的係期盼藉由提高網路攻擊訊息共享度來改善網路安全問題。 該法案通過引發各界譁然。修正後的網路安全資訊分享法案去掉多數保護隱私權之條款,諸如分享客戶資訊時不用再遮掉無關的個人資訊、不再禁止政府利用這些個人資訊進行監控。 美國媒體批評該法案的通過是政府最可恥荒謬的行為之一。就隱私權層面,批評者認為,該網路安全資訊分享法案仍與監控密切結合,未能解決客戶個人資料被大量外洩的風險。就程序面而言,一個正式的網路安全資訊分享法案似乎不應被包裹在大額綜合預算法案中通過。該法案通過後之執行情形值得繼續觀察。
歐盟創新採購機制觀測