美國農業部(United States Department of Agriculture, USDA)於今年2014年8月就現代化肉禽屠宰檢驗規定(Modernization of Poultry Slaughter Inspection)再新增肉禽屠宰相關行政管制規範,稱為新肉禽檢驗系統(New Poultry Inspection System, NPIS),藉此改進現行的肉禽檢驗系統(poultry inspection system)。該規定係美國於1957年為補充艾森豪總統簽署之肉禽產品檢驗法(Poultry Products Inspection Act of 1957)所制定,為美國國內現行肉禽檢驗系統之法源依據,由隸屬於USDA的食品安全檢驗服務(Food Safety and Inspection Service, FSIS)負責執行該規定所要求之相關肉禽食品安全稽查。但近年來各國陸續發生重大食安問題,加以該規定自1957年後,已制定60年之久,實有許多應檢討修正之處。適逢美國總統發布執行命令13563號(E.O. no.13563)要求各行政機關檢視並改進相關規範,以減輕肉禽產品遭受微生物汙染之風險,並整合政府相關行政資源提升行政檢驗效能及適時移除現行法規造成產業創新的制度性障礙。而該規範之新肉禽檢驗系統(new poultry inspection system, NPIS)目前僅適用於幼小雞隻的肉品和火雞肉之生產,且不會全面汰換掉現行的各項檢驗系統,由廠商進行成本效益分析是否將該新檢驗系統導入生產體系。新規定簡要介紹包括要求於冷凍程序前後需進行含菌量檢驗,且廠商必須發展、建立、維護此一管理作業流程,以確保肉品未受到汙染;此外,亦增訂其他規定,如限制生產線上每分鐘不得屠宰超過140隻肉禽、移除冷藏溫度之相關標準,改採廠商必須藉由實驗和技術支援等,反覆檢驗以實質判定其冷藏管理程序中實際合理之冷藏溫度,FSIS更重新定義規範中關於冷藏之定義,以符合產業現況。新規定目前已公告於聯邦公報(Federal Register),將於六個月後正式生效。
本文為「經濟部產業技術司科技專案成果」
法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)於2025年7月15日指出近年來詐騙案件快速增加,詐欺行為人假冒銀行人員,以電話引導受害者自行完成轉帳或新增收款人等操作。為降低受騙風險,部分銀行在行動應用程式中設計機制,能偵測到使用者操作較高風險的交易時若同時處於通話狀態,便可即時跳出警示或暫停交易。此等做法雖有助於阻詐,惟因涉及個人資料存取,故須符合《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR)之規範。 CNIL提醒銀行蒐集通話資訊須取得使用者明確同意,不能僅依賴行動裝置的「電話」權限,亦不得因使用者拒絕同意而限制應用程式之基本使用,僅在如新增收款人、大額轉帳、或轉帳至高風險國家等異常活動操作中才能要求同意,並須提供網站、電話或分行等替代辦理方式。又相關權限請求應在交易操作過程中提出,而非在應用程式安裝時統一要求,安裝前亦應向使用者充分說明。若使用者不同意,仍必須使其能正常查詢帳戶資訊。 此外,在資料處理上須遵循資料最小化原則,僅得蒐集是否進行通話及通話時長之資訊,不得恣意擴大資料蒐集範圍。與此同時,銀行應讓使用者在同意與撤回同意操作上一樣簡便,不得僅引導至手機裝置設定,而應使消費者能在應用程式中直接操作,並清楚告知撤回同意後功能受限範圍及可替代方案。 除利用應用程式進行通話偵測,CNIL建議銀行尚應搭配其他措施,例如在應用程式內定期推送防詐提醒、舉辦宣導活動,或在確認付款時詢問客戶是否正與自稱是「銀行顧問」之人通話。若銀行欲透過應用程式偵測通話狀態來防詐,則須在合法性、必要性、資料最小化以及使用者同意之間取得平衡。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
政府採購雲端服務新興模式暨資安一體考量之研析 日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。 然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。 日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。 台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。