美國食品藥物管理局(the United States Food and Drug Administration,以下簡稱FDA)於2015年2月13日公告四項與藥品製造有關之指導原則(guidance)作為補充相關政策執行之依據,主要涉及藥品製程中,藥品安全不良事件回報機制、尚未經許可之生技產品的處理模式、藥品重新包裝,以及自願登記制度中外包設施之認定應進行的程序與要求。
該四項指導原則係源於FDA依據2013年立法通過之藥物品質與安全法(The Drug Quality and Security Act,以下簡稱DQSA)所制定之最新指導原則。因2012年位於麻州的新英格蘭藥物化合中心(The New England Compounding Center),生產類固醇注射藥劑卻遭到汙染,爆發致命的黴菌腦膜炎傳染事故,故美國國會制定DQSA,以避免相同事故再次發生。DQSA要求建立自願登記制度(system of voluntary registration),倘若製藥廠自願同意FDA之監督,成為所謂的外包設施(outsourcing facilities)。作為回饋,FDA即可建議特定醫院向該製藥廠購買藥品。
而本次四項指導原則之內容,其一主要涉及外包設施進行藥物安全不良事件回報之相關規定,要求製藥廠必須回報所有無法預見且嚴重的藥物安全不良事件。在不良事件報告中必須呈現四項資訊,其中包括患者、不良事件首名發現者、所述可疑藥物以及不良事件的類型。同時,禁止藥品在上市時將這些不良事件標示為潛在副作用。第二份指導原則對於尚未經許可的生技產品,規定可進行混合,稀釋或重新包裝之方法;並排除適用某些類型的產品,如細胞療法和疫苗等。第三份指導原則涉及重新包裝之規定,內容包括包裝地點以及如何進行產品的重新包裝、監督、銷售和分發等其他相關事項。而第四份指導原則規範那些類型之藥品製造實體應登記為外包設施。為此,FDA亦指出聯邦食品藥物和化妝品法(the Federal Food Drug & Cosmetic Act)之規定裡,已經要求製造商從事無菌藥品生產時,必須將法規針對外包設施之要求一併納入考量。
本文為「經濟部產業技術司科技專案成果」
日本經濟產業省(以下簡稱經產省)為了落實安倍內閣提出之日本再興戰略,希望透過相關法制規範之調整,促進產業新陳代謝機制,並喚起民間的投資,進一步解決日本國內企業「過多限制、過小投資、過當競爭」現象,前於2013年10月15日將「產業競爭力強化法」提交國會審議。經日本國會審議後,該法已於同年12月6日公布,計有8章、共156條之條文,另有附則45條,並取代原先於2011年修正之產業活力再生特別措施法的功能。因產業競爭力強化法之內容屬政策性規範,搭配之施行細則、施行令等也陸續於2014年1月20日公布。 自產業競爭力強化法施行後,對於日本企業預計開發新產品和新技術等放寬限制,讓企業有機會進入與原業務不同之領域,並進行業務整編。舉例而言,依該法第9條第1項之規定:「欲實施新事業活動者依據主務省令規定,可向主務大臣提出要求,確認規定其欲實施之新事業活動及與其相關之事業活動的規範限制之法律和其所根據法律之命令規定的解釋,以及該當規定是否適用於該當新事業活動及與其相關之事業活動」之規定,就相關事業活動是否符合法令與否,向經產省申請解釋。 此一制度被稱為「灰色地帶消除制度」,目的在於使日本企業規劃新事業之前,可先洽主管機關瞭解該新事業活動涉及之業務是否合法,在經產省網站上已有SOP與申請表格可供參考。而此制度功能在於透過日本主管機關的闡釋、說明或認定相關計畫,讓有意從事創新活動的業者有如吞下定心丸,得以積極規劃、推動後續作業。
英國科學辦公室發布分佈式分類帳技術報告,提出八大建議2016年1月, 隸屬英國商業、創新和技術部 (Department for Business, Innovation and Skills,BIS)的科學辦公室(Government Office for Science)發布「分佈式分類帳技術:區塊鏈以外(Distributed Ledger Technology:beyond block chain)」研究報告。本篇報告由產官學界合作完成,主要在評估分佈式分類帳技術可以運用在哪一些公私領域,並決定政府以及私人應該採取哪些行動以促進分佈式分類帳技術可被有益運用,並避免可能帶來的傷害。 該份研究報告認為,分佈式分類帳技術可在多個領域協助政府機構,包含徵稅、提供福利、發行護照、土地登記、確保商品供應鏈並且確保政府記錄與服務的完整性。相較於其他網路系統,分佈式分類帳技術較不易受駭客攻擊,而且由於每個参與者都有一份帳簿副本,如果有惡意竄改的狀況,也可以輕易被發現,但這不表示分佈式分類帳技術就不會被駭客攻擊。 數位五國(Digital 5,D5)之一的愛沙尼亞,已多年實驗運用分佈式分類帳技術於公領域服務多年。愛沙尼亞政府透過私人公司運用分佈式分類帳技術建制「免金鑰簽名設施(Keyless Signature Infrastructure,KSI)」,KSI允許愛沙尼亞公民驗證其在政府資料庫資訊的完整性,並避免內部人透過政府網路從事非法活動。KSI確保公民資訊安全以及準確,因而可協助愛沙尼亞政府提供數位化的公司登記以及稅務服務,減少政府以及社會大眾的行政作業負擔。 除此之外,分佈式分類帳技術也有助於確保商品以及智慧財產權的所有以及出處。例如Everledger此一系統可用於確保鑽石的身分,從礦產、切割到銷售,可減少並避免欺詐以及「血鑽石」進入市場。 簡而言之,分佈式分類帳技術提供政府可減少詐欺、腐敗、錯誤以及紙上作業成本的框架,並透過資訊分享、公開透明以及信任,具有可重新定義政府與公民關係的潛力。對於私領域而言也具有同樣可能性,報告特別提出可透過分佈式分類帳技術發展「智慧契約」,可增加信任度並提高效率。據此,本報告針對政府部門提出八大建議: (1) 應成立專責部門,並與產業、學界緊密合作,並應考慮成立臨時性的專家諮詢團隊。 (2) 英國的研究社群應該要投入研究確保分佈式分類帳技術具備可即性、安全性以及內容準確性。 (3) 政府應支持為地方政府成立分佈式分類帳技術實地教學者,匯聚所有測試技術以及其運用的所需元素。 (4) 政府需要思考如何為分佈式分類帳技術建立妥適的法制框架。法規需要配合新科技應用技術的發展而進步。 (5) 政府應該與產學合作確保相關標準可以符合分佈式分類帳技術及其內容完整性、安全性以及隱私的需求。 (6) 政府應與產學合作確保最有效率以及最可用的身分認證網路協議可為個人及組織所使用,這項工作應與國際標準的發展與執行緊密連結。 (7) 政府應對分佈式分類帳技術進行試驗,以評估該項技術在公領域的可行性。 (8) 建議成立跨部門的利益群體,結合分析以及政策群體,以生成並發展潛在使用案例,並且在公民服務中提供具備知識的專家人員。 除了八大建議,管理與法制上,本報告指出分佈式分類帳技術具有兩種管理規範:法律規範以及技術規範。法律規範是「外部」規範,法律規範可能會被違反,緊接著面臨違法處罰的問題。技術規範是「內部」規範,假如違反技術規範,「錯誤(error)」產生無法運作,因此「規範」本身就可以確保會被遵循。換句話說,技術規範可以節省法律規範的執法成本。另外一方面,分佈式分類帳技術為去中心化技術,如果要以法制管理,也只能在参與者身上施加法律義務,例如Bitcoin,只能對於提供Bitcoin交易服務的平台施加法律義務。美國紐約州金融服務部所發行的比特幣交易執照BitLicnese即為一例。因此,基於去中心化的特性,報告建議政府單位應該要儘量参與技術標準的制定,並且配合技術標準制定相關法律,法律規範與技術規範兩者應該要交互影響。
中國大陸將展開為期一年關於科技成果使用、處置和收益管理的試點工作根據中國大陸國務院於2014年7月2日召開國務院常務會議後的決定,未來大陸地區將在其國家自主創新示範區和自主創新綜合試驗區內,選擇部分中央級事業單位,展開為期一年關於科技成果使用、處置和收益管理的試點工作。 以鼓勵科研創新作為驅動經濟發展的策略,已是最新一屆大陸地區中央領導人施政的重點。早在2007年其政府修訂之《科學技術進步法》,已對申請項目的承擔者(類似我國執行單位或計畫主持人)依法取得發明專利權等知識產權有所規範。然目前大陸地區對於整體科技成果之無形資產的使用權、處置權和收益權等,並無一致性的作法。 惟為加速科技成果移轉(大陸地區稱為「轉化」)和事業化,進一步提升研發創新,中國大陸財政部曾於2011年在北京中關村的國家自主創新示範區,展開中央級事業單位科技成果處置權和收益權的管理改革,簡化800萬以下的科技成果處置流程(註:關於此部分發展趨勢可另參考近期國務院法制辦公室對外公告之「關於《促進科技成果轉化法(修訂草案送審稿)》公開徵求意見通知」等相關內容)。 本次中國大陸國務院常務會議進一步決定,允許更多的試點單位可以採取轉讓、許可、作價入股等方式移轉科技成果,將所得收入全部留歸試點單位自主分配。相信這樣的方式有助於激勵對科技成果創造做出重要貢獻的機構和人員,因本次試點工作為期一年,其具體執行成果將持續觀察、瞭解。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。