在俄亥俄州長於2016年6月18日簽署通過HB523法案後,俄亥俄州正式成為美國第25個將醫療用大麻合法化的州。這項法案將在今年11月生效,並且允許重症患者使用及採買醫療用大麻。 與原本在2015年11月被退回的法案相比,娛樂性用途大麻直接被排除在本次法案適用範圍外,而且不允許個人在家裡種植或是直接抽食。因此,與一般人想像中,如同荷蘭般的大麻合法化政策相當不同。 當然,某種層面上來說,這項法案對重症病患是一大福音,他們可以合法取得大麻,不再因為持有大麻而被當成罪犯。但是俄亥俄州這部法案對於大麻使用者於現實生活中情況能帶來多大的改善,仍讓人懷疑。因為在俄亥俄州現行法律及行政系統下,俄亥俄州政府並未隨著新的法案,推行相關行政措施。一般來說,在大麻合法化之區域,通常會要求雇主不得禁止員工使用與持有醫療用大麻,或是不可以因當事人有使用、持有或散佈醫療用大麻之紀錄或習慣,而拒絕錄用或是解聘之,同時,會禁止對員工施行藥物檢查。倘若雇主有前列之行為,通常會面臨處罰,例如:主管機關會取消該名雇主原先所享有之稅捐優惠或其他惠優措施。此外,員工得因雇主反禁藥之行為,對雇主提起訴訟。是以,在缺乏相關行政配套措施的情況下,俄亥俄州的大麻使用者未來在工作場所中,仍將會面臨許多挑戰以及障礙。 總而言之,俄亥俄州通過這部法案,在法律上可謂是一大里程碑,但尚與一般大眾認知的「大麻合法化」仍存有很大的差距。同時,未在行政作為上採取相對應的保障措施,仍可以想像將來醫療用大麻使用者在社會上仍將面臨許多障礙。
何謂日本「尖端大型研究設施」?所謂「尖端大型研究設施」,系指日本《特定尖端大型研究設施共用促進法》(特定先端大型研究施設の共用の促進に関する法律)中,由國立研究法人所設置,並受該法規範之研究設施。 該法之目的係在設置被認為不適合於國立實驗研究機關,或進行研究之獨立行政法人中重複設置之以高額經費購置的該研究領域中最尖端技術之研究設施設備,並於該研究領域中進行多樣化研究之活用,以發揮其最大之價值。 目前受到該法規定的研究設施包括特定同步輻射研究設施,其包含了「SPring-8」及「SACLA」等兩座大型同步輻射研究設施,與特定超級電腦設施,亦即超級電腦「京」,以及包括了高強度質子加速器「J-PARC」之一部的特定中子輻射研究設施;以SPring-8為例,該設施之網站上登載有使用情報、使用申請及參考資料等,供欲使用該設施之研究人員參考。
歐盟執委會以聯合行為處罰智慧卡晶片製造商1.38億歐元據調查,英飛凌(Infineon)、飛利浦(Philips)、三星電子(Samsung)及瑞薩電子(在當時為日立與三菱之合資公司) (Renesas,Hitachi 及Mitsubishi)在2003年9月至2005年9月間,藉由雙邊接觸以串謀有關智慧卡晶片相關事項;歐盟執委會認為該些公司在歐洲經濟區內(EEA)有對於智慧卡晶片之聯合行為,違反歐盟反托拉斯法(Cartels)。執委會因此對其處罰138,048,000歐元。瑞薩電子因符合2006年之寬恕告知(2006 Leniency Notice)而向執委會揭發智慧卡晶片之聯合行為,故免除罰鍰,三星因配合調查而減免30%之罰鍰。 該些進行聯合行為之公司係藉由雙方接觸來往決定個別回應顧客要求降價之方式。他們討論並交換機密之商業資訊,包含價錢、客戶、契約協商、產能或產能利用率及未來之市場行為。該行為違反了禁止聯合行為和限制商業活動之歐盟運作條約(TFEU)第101條及歐盟經濟區協定第53條。 負責競爭政策之執委會副主席Joaquín Almunia說: 在這個數位時代,不管是在手機、信用卡或護照裡,幾乎每個人都在使用智慧卡晶片。製造商應藉由創新及以最佳的價格提供最好產品之方式,致力於勝過競爭對手。若製造商不這麼作,反而選擇串謀,而造成消費者利益的損失,應受到制裁。 最初,執委會希冀藉由2008年調解通告(2008 Settlement Notice)而尋求與部分公司和解之可能性。然而,基於調解協商之進展緩慢,執委會遂於2012年決定停止調解而回歸至正常程序。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。