數位內容與色情問題引起討論

      南非國會近期推動數位匯流法案 (Convergence Bill) 之立法,其中,色情內容是否應於數位匯流立法之中加以定義與規範,引起不同的看法。有專家指出,色情內容超出了數位匯流法案所應規範之主題。亦有專家指出,如定義與規範不當,反而會引發出更多的問題。


  在數位匯流與數位內容成為趨勢的今天,我們對於數位匯流與數位內容都從正面的角度來加以觀察,並予以期待。然而,數位匯流的只是傳播媒介,數位內容標示的也只是承載內容的載體。我們希望什麼樣的數位內容?負面的數位內容 ( 如色情內容 ) 在未來數位匯流與數位內容的發展趨勢中,應被放置在一個怎樣的位置,應是值得我們加以思考的。

相關連結
※ 數位內容與色情問題引起討論, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=696&no=57&tp=1 (最後瀏覽日:2025/12/18)
引註此篇文章
你可能還會想看
歐盟COVID-19疫情位置資料和接觸追蹤工具使用指引

  歐洲資料保護委員會(European Data Protection Board, EDPD)於2020年4月24日公布COVID-19疫情期間使用位置資料和接觸追蹤工具指引文件(Guidelines 04/2020 on the use of location data and contact tracing tools in the context of the COVID-19 outbreak),就針對COVID-19疫情期間,歐盟成員國利用定位技術和接觸追蹤工具所引發的隱私問題提供相關指導。   EDPD強調,資料保護法規框架於設計時即具備一定彈性,因此,在控制疫情和限制基本人權與自由方面可取得衡平。在面對COVID-19疫情而需要處理個人資料時,應提升社會接受度,並確保有效實施個資保護措施。然而資料和技術雖可成為此次防疫重要的工具,但此次的資料利用鬆綁應僅限用於公共衛生措施。歐盟應指導成員國或相關機構,採取COVID-19相關應變措施時,若涉及處理個人資料,應遵守有效性、必要性、符合比例等原則。本次指引針對利用位置資料和接觸追蹤工具的特定兩種情況,闡明其利用條件和原則。情況一是使用位置資料建立病毒傳播模型,並進一步評估及研擬整體有效的限制措施;情況二是針對有接觸史病患進行追踪,目的是為通知確診病人或疑似個案以進行隔離,以便儘早切斷傳播鏈。   EDPB指出,GDPR和電子隱私保護指令(ePrivacy Directive)均有特別規定,允許各成員國及歐盟層級公共單位使用匿名及個人資料監控新冠病毒的傳播,並呼籲透過個人自願性安裝接觸追蹤工具。

「環境科技、環境政策與貿易」專題連載(3):環保標章、環境商品市場拓展與貿易

代理孕母將合法化

  經過 10 多年的爭議,國內第一部「代孕人工生殖法」草案終將出爐。未來代理孕母將採無償精神,代孕者須年滿 20 歲且須有生產經驗,但是沒有國籍的限制。   根據草案內容,未來代孕制度將採無償精神,雖不得有商業仲介行為,但委託夫妻得提供代理孕母醫療、交通和營養費等費用, 甚至包括分娩後的醫療檢查、工作損失、交通費用等 。 草案中對於委託夫婦的條件放寬,不只限於沒有子宮之婦女,在精、卵自備的前提下,只要夫婦懷孕可能危及生命,就適用此法案, 得尋求人工生殖手術之婦女 , 包括沒有子宮、有懷孕障礙或分娩有危險等婦女。在親子關係認定方面,目前備有出生後收養制以及直接認定為委託夫妻婚生子女等二種方案。此外,代理孕母在生產後 2 年內,得保有探望代孕子女之權利。至於代理孕母之資格,僅要求須年滿 20 歲且有懷孕經驗,而無國籍限制。   未來代理孕母將有法可循,造福不孕婦女,但是在親子關係認定問題上,似仍需要更嚴謹的討論,避免衍生更多糾紛。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP