德國聯邦內政部對歐盟部長會議「資料保護基本規則」(Datenschutz-Grundverordnung)發表意見書,並提出修法建議

  德國聯邦內政部資料保護與資訊自由委員會於2015年8月15日針對歐盟部長會議於6月15日所確立對歐盟資料保護基本規則(Datenschutz-Grundverordnung)的基本立場,若依該立場則(1)資料處理目的之變更理由將變得更寬泛(2)對資訊保有機構所提出的申請程序以有償為原則(3)蒐集個人資料應遵循之規範過於簡略等,該委員會提出批評與建議。

  該委員會會議認為有必要改進歐盟「資料保護基本規則」,令其更周延,更呼籲對資料保護基本規則的修正,應循以下重點及原則進行:

1.資訊節約原則應該堅持

  多年來在德國法已確立的資訊節約原則(Datensparsamkeit)和資訊避免原則(Datenvermeidung),應予維持。因此資料保護基本規則中,須清楚詳盡地規定節約原則和資訊避免原則。

2.目的明確性原則的要求不能退縮

  目的明確性原則(der Grundsatz der Zweckbindung)之功能,係為資料處理之透明性和可預見性,該原則亦強化了當事人的資訊自主權,使其得以信賴個人資料之處理,僅限於所申請之目的內進行。

  故若依理事會建議之規範,使資料處理目的之變更,得以更寬泛的理由進行,將背棄歐盟基本權利憲章中之目的明確性原則。

3.即令個人同意書亦不得拋棄資訊主權

  資訊自決權,意謂原則上個人可以用同意的方式,決定個人資訊的使用和拋棄。但即使有清楚明確的意思表示,該同意亦僅係保障資訊主權的重要因素之一。另就同意書而言,若如歐盟部長理事會所建議者,只需清楚明確即可,則這種方式於保護上是不夠充分的。

4.個人資料建檔必須有效地限制

  該會議重申,嚴格規範對個人資料的蒐集有其必要性。為個人檔案之整合與充分使用設置嚴格的界限,現有規定太過簡略而遭到批評。

5.有效的資訊保護需要歐盟層級的企業與官署的資料保護專員

  對於資訊保護監督的有效性,在德國已確立之官方與私人企業的資訊保護專員制度係重要之一環。應致力於歐盟層級公/私機構資訊保護專員制度在整個歐洲的推動。

6. 資訊傳輸第三國官署和法院需要更嚴格的監督

  近期的隱私醜聞之後,目前亟需對歐洲公民個人資料給予更妥善的保護,以對抗來自第三國的機構。此意見書贊同歐盟議會的建議,即以第三國法院的判決和行政機關的決議,要求對個人資訊的披露,在歐盟之中僅能基於國際公約中機關互助和法律協助之規定,原則上予以承認與執行。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國聯邦內政部對歐盟部長會議「資料保護基本規則」(Datenschutz-Grundverordnung)發表意見書,並提出修法建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7020&no=57&tp=1 (最後瀏覽日:2025/12/01)
引註此篇文章
你可能還會想看
英國交通部將擬議新增無人機規管措施

  在過去幾年,涉及無人機的事故發生頻率急遽上升,從2014年的6起事件至2017年增加到93起,根據英國交通部(The Department for Transport)研究顯示,重達400克的無人機可撞碎一架直升機的擋風玻璃、2000克無人機可嚴重損壞一架客機的擋風玻璃。為防止濫用無人機,保障大眾安全,英國交通部將提出更嚴格的規管措施,並於2018年7月26日起於網站上公開徵求意見,若通過將成為無人機法案(Drones Bill)草案的一部分。   擬議之規管措施包括:(1)設定小型無人機持有者之最低年齡;(2)賦予警察對於違規無人機之執法權力,如對於違規之無人機,即時開立罰緩處分;(3)使用新的反無人機技術(counter-drone technology)以保護公眾活動,確保國家關鍵基礎設施免受滋擾,並防止物品走私至監獄;(4)規定無人機操作員於無人機起飛前,透過應用程式(apps)提交飛行計劃。   無人機應用產業在未來十年將迅速成長,新措施之目的係為確保無人機之使用安全。交通部政務次長(Parliamentary Under Secretary of State for Transport)Baroness Sugg表示,無人機為社會和經濟帶來良好效益,為防止無人機造成的滋擾超過其潛在利益,將新增規管措施,並進行公開諮詢。   此外,從2018年7月30日起,禁止無人機飛行高度超過122公尺(400英尺),及不得於距離機場邊界1公里(0.6英里)內飛行之飛航令(Air Navigation Order)已正式施行,違反者將面臨高達2,500英鎊的罰金或處五年以下有期徒刑。

何謂瑞典「VINNOVA」?VINNOVA的組織地位與功能為何?

  瑞典近年來積極制定科技創新政策,為了提升政策協調度,瑞典於2001年繼續進行組織改造,創立瑞典創新系統署(Swedish Governmental Agency for Innovation Systems, VINNOVA)與瑞典研究委員會(Swedish Research Council),成為創新發展最主要的兩大支柱。   VINNOVA是瑞典推動科研創新重要的一個部署,瑞典政府相當重視此單位,每年投入約20億瑞典克朗的經費於此,且除了在斯德哥爾摩(Stockholm)設有總部外,更在比利時的布魯塞爾(Brussels)及美國矽谷(Silicon Valley)設有辦公室,以掌握世界最新的產業創新動態,其組織單位約有兩百多名員工,負責VINNOVA計畫推動等工作 。由於VINNOVA的特別地位及其執行許多協助瑞典產業創新之計畫。   VINNOVA在科技創新扮演重要的推手,政府也希望藉VINNOVA的成立促進產業社會的發展,尤其重視產業創新領域。為能順利推動科研創新的過程,且加強學術、產業及公共行政單位的研究合作,VINNOVA建立三螺旋(Triple Helix)模式,希望藉由合作而相互學習。

歐盟提出人工智慧法律框架草案

  歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。   新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。   未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP