德國聯邦議會通過電力驅動車輛優惠法(下稱電動車法(Gesetz zur Bevorrechtigung der Verwendung elektrisch betriebener Fahrzeuge ,Elektromobilitätsgesetz-EmoG),該法遂於於2015年6月5日生效。
德國為了達到減碳目標,不但大力推動再生能源,且亦於五年前成立國家電動車平台,希望於2020年達到全國有100萬輛電動車在街道上行駛之目標,德國政府為達此一目標,修法讓電動車可享地方政府提供的停車位以及可使用巴士車道兩項優惠。
該法對電動車之定義為(1)電池驅動車輛(2)可充式之油電混合車輛及(3)燃料電池車輛(電動車法第2條),並提供優惠予(1)公用道路巷道之停放(2)全部或一部特定公用道路巷道之特別使用(3)進入或通過禁行區域,例外地許可之(4)公用道路巷道停放時之規費,免除之(電動車法第3條第4項)。
另外,為推廣使用,依道路交通秩序法第46條第1a項,電動車輛亦得黏貼特殊標識行駛於交通管制區、禁行區域及需繞道之路段。供巴士行駛道路亦同。而為了電動車之辨識,本法第4條亦規定電動車標識應具備之內容,並於2015年9月26日發相關之電動車標示規則。
本文為「經濟部產業技術司科技專案成果」
隨著食物過敏與過胖等健康問題愈來愈受重視,美國FDA(Food and Drug Administration, 食品暨藥物管理局)規定從2006年1月1日起,食品製造商必須在食品標示上揭示產品中八種主要過敏原與反式脂肪(trans fat)含量,並且必須加強揭示卡路里含量、說明整個包裝所含的養分。 依據此項新規定,廠商必須在食品標籤上以簡易的文字,標示八種容易造成過敏的過敏原,包括核果(杏仁、胡桃、大胡桃)、牛奶、蛋類、魚類、甲殼綱蝦蟹、花生、大豆與小麥。至於反式脂肪,又稱為轉化脂肪或反脂肪,是不飽和脂肪酸的一種,它會刺激人體內低密度脂蛋白(LDL)的增加,進而使低密度蛋白膽固醇(LDL-C)的量增加。LDL-C又被稱為『壞膽固醇』或『不好的膽固醇』,它會間接刺激膽固醇升高,增加罹患心臟血管疾病的風險。過去一直沒有決定每人每天攝取量標準,因此在商品包裝上的營養成分表(Nutrition Facts Table)一直都沒有列出反式脂肪含量,但是新制上路後,在包裝標籤上面也必須列出反式脂肪含量。 在消費者越來越重視健康問題之趨勢下,未來如何製造反型脂肪低或零含量的食用加工油脂產品,相信會是相關業者所面臨的新挑戰。
網路中立管轄權屬誰?FCC尋求法院支持美國聯邦上訴法院哥倫比亞巡迴分院(US Court of Appeals for the District of Columbia Circuit)於2010年1月12日,針對網路中立議題召開口頭辯論聽證會。該案上訴人為美國目前電視及網路服務市佔率最高的Comcast所提出,系爭案由為聯邦通信委員會(Federal Communication Commission, FCC)於2008年禁止網路服務提供者(Internet Services Provider, ISP)限制其用戶使用BitTorrent。 BitTorrent為一種常見的點對點傳輸程式,多用以線上檔案分享。該公司認為,FCC並沒有足夠的權力要求其不分用戶等級,全部提供毫無限制的服務;而FCC卻從保護消費者及網路應開放自由進入的角度辯述,從而使FCC是否有權力規範網路中立(Internet Neutrality)之議題邁入更激烈的討論。 所謂「網路中立」,意指網路服務提供者不得因傳送或下載資訊種類差異而提供不平等的流量服務。早在2005年,FCC即有一套管制網路服務提供者侵害網路中立的審查標準,但該標準並非為一體適用的法律位階,而FCC是否得依職權制定網路中立的規範,一直以來亦有所爭議,是故此次其與Comcast對簿公堂,FCC最終目的即是在尋求法院之見解,希冀獲得聯邦法院的支持而使其立法行動名正言順。 對此,聯邦最高法院原則上認同FCC以往對於「資訊服務」的見解,亦即,由於傳統電信服務往往與重大基礎建設相關,尤其是網路開放接取的相關規定,FCC應提高其管制密度;而屬低度管制的資訊服務(Lightly Regulated Information Service)則不應與電信服務有相同的對待;是故Comcast據認在網路中立尚未有明確權責規劃前,FCC實無權插手管控Comcast所提供之資訊服務。此外,該公司亦提出,類似BitTorrent的點對點傳輸應用程式往往用於大量檔案的交換,無限制地提供所有用戶使用,不但造成整體網路服務效能下降,由於傳輸的內容往往為影音檔案,亦間接侵害了Comcast本身的電視業務。 對此,雙方目前仍各執一詞,由於案件目前尚在上訴法院審理,FCC此次投石問路的策略是否成功還在未定之天,但可以確定的是,不論法院的見解為何,網路中立的爭議恐將持續發酵,並對後續網路服務提供之發展產生一定影響。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國證券交易委員會對虛擬貨幣交易平台提起訴訟美國證券交易委員會(The Securities and Exchange Commission,以下簡稱SEC)於2018年11月8日發出聲明,依據1934年的證券交易法(下稱證交法)第21C條對EtherDelta 創辦人Zachary Coburn 提起訴訟,並做出要求其停止交易之禁止令。 EtherDelta 乃為一線上交易平台,允許買家和賣家在其平台上交易「以太幣」和其他虛擬貨幣。其平台特徵有: 提供平台,促成虛擬貨幣交換 EtherDelta之網站提供一線上平台予買賣雙方,對經過平台認證的虛擬貨幣進行交易,促成虛擬貨幣交換。於網站成立之一年半中,其促成了360萬筆訂單。 以智慧合約自動驗證進行交易 EtherDelta以智慧合約(smart contract)維持網站運作,其智慧合約檢查用戶發出之訊息是否有效,於確認買賣雙方帳戶都有足夠資金後,自動進行交易。 提供資訊且對用戶資格未設限 EtherDelta於網站上提供虛擬貨幣之資訊,以及個別虛擬貨幣之每日交易量,同時於網站上顯示前500筆買方和賣方之交易資訊,以價格和顏色進行分類。而其對於成為網站用戶之資格並無限制。 SEC於本案中認為,EtherDelta並未註冊成為證券交易所,卻執行與證券交易相關之業務,已違反證交法,其論述理由為: EtherDelta平台上之虛擬貨幣屬於證券性質 本案SEC使用Howey Test—美國聯邦最高法院於1946年在SEC v. W. J. Howey Co. 一案中所確立之測試要件,來判斷是否符合證券。由於用戶以金錢購買虛擬貨幣,該金錢投資行為建立共同事業,且具有藉由他人努力而獲利之期待,故屬於證券性質之虛擬貨幣。 EtherDelta性質上為交易所,但未為註冊 EtherDelta 作為平台聚集大量投資人,並以智慧合約促成買賣雙方進行虛擬貨幣交換,已屬於實現證券交易之行為,具有證交所功能,故於不具有豁免情形下,其未註冊已違反證交法第5條規定。 本案就SEC之主張,EtherDelta並未為否認或承認之表示,但同意該禁止交易之命令,並同意支付SEC行使歸入權之30萬美元及其他判決前利息和罰款。 觀察目前美國對於虛擬貨幣買賣行為之監管,並無立專法規範,僅以證交法為準則,就個別虛擬貨幣之性質以Howey Test為檢驗,個案認定是否屬於證券。倘若屬於證券,則對於進行交易之平台課予證券交易所之責任,而對於虛擬貨幣而言,被認定為證券勢必被課予義務俾利增加投資人之保障,可能增加公開度及透明度,然其快速籌資之功能亦可能有所減損,SEC對於虛擬貨幣之監管影響與成效均值得繼續觀察之。另外,SEC曾於2017年7月25日針對The DAO做出一調查報告,其於報告中認為證券型之虛擬貨幣需要受到監管,從而本案作為DAO報告之後被裁罰之虛擬貨幣交易平台首例,有其作為里程碑之重要意義。首先其確立了SEC自DAO報告之後對於證券性質虛擬貨幣需監管之見解,再者表達SEC認為就算採用去中心化、分散式節點之方式進行證券交易,同樣屬於證交法所稱之「證交所」,不因此而豁免監管。