添加營養素到一般之食物中,對於維持或增進整體食物之營養品質來說,是一個非常有效率之方式。然而,不當添加或濫用這些外加之營養素,卻可能造成消費者過度或不足攝取某些特定之營養成分,甚至更可能造成某些食物之營養價值有誤導或詐騙消費者之嫌。
美國食品藥物管理局(Food and Drug Administration,以下簡稱FDA)為了統一回應食品廠商、其他聯邦主管機關以及相關學會之問題,針對添加到食物中之必需營養補充品,在2015年11月6日公告了一份指導原則(Questions and Answers on FDA’s Fortification Policy)。本指導原則以Q&A之形式呈現,,列出FDA對於食品營養強化物(Fortification of Foods)政策之態度(並未變更其自1980年代以來對於食品營養強化物之向來立場)以及建議遵循規定。
FDA建議食品營養強化物添加之基本原則如下:校正飲食之缺陷;補充因食物於處理、流通之過程中所喪失之營養素;根據食物整體熱量計算之結果,均衡添加各種食品營養強化物等。
本指導原則僅適用於人類使用之食品,動物用食品並不在其建議範圍內;另外,其亦不適用於嬰幼兒配方或是一般之保健營養品,其僅適用於一般常規之食物,例如:牛奶、果汁、豆漿、麥片、麵包、通心粉、乳瑪琳等。但是要注意,針對一些新鮮的食物或本身即非營養的食物,例如:新鮮蔬菜、魚肉類、糖、甜點、碳水化合物等,並不建議再額外添加食品營養強化物。
另外,只有人體所必須的營養素(essential nutrients)才可額外添加到常規的食品中,亦即所有添加物都須依據膳食營養素參考攝取量(Reference Daily Intakes;RDI)所規定之種類及建議量,做適當的添加;且添加物必須合法且安全。
食品營養強化物之標示,則必須依據食品標示相關法規恰當為之,不可出現會誤導消費者的任何詞彙,也不宜做出任何可以預防營養素缺乏之陳述,因為這麼做可能使消費者誤認有添加物的食品其營養成分較原始食物高。
本指導原則對廠商並無強制力,然要是廠商有違反本指導原則之情形,FDA將會發出警告信,顯示出FDA強烈建議廠商遵守本指導原則之決心。
法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。
德國與愛爾蘭對於個人資料處理是否須明示同意之見解不同德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。 德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。 有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。 對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。
歐盟執委會發布關於歐洲境內資料流監控之新研究歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。 在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。 該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量 該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。 作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。
日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標2017年6月9日,日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標,藉由第四次產業革命,包括IoT、大數據、人工智慧及機器人等創新產業,具體解決每個人都會面臨的社會課題(例如少子高齡化)。「未來投資戰略2017」內容包含四個面向,分別為Society 5.0戰略領域、Society 5.0橫向課題、建構區域經濟的良好循環系統及海外成長市場納入等。 一、Society 5.0戰略領域:針對健康壽命的延伸、移動革命的實現、次世代供應鏈、舒適的基礎建設與城市規劃以及FinTech金融科技。 二、Society 5.0橫向課題:分為創造價值泉源及建構價值最大化兩部分。創造價值泉源方面,分別提出數據活用的基礎與制度建構、教育及人才強化、創新與風險的良好循環系統;建構價值最大化方面,則有監理沙盒的創設、規範改革.行政手續簡化.IT化的整體推進、「賺錢力」的強化──從形式到實質的企業治理改革、公共服務與資產的民間開放、國家戰略特區的加速推進、網路安全以及共享經濟之相關政策等。 三、建構區域經濟的良好循環系統:中小企業與小規模事業的革新並活化服務產業與提升生產力、農林水產業的強化與展開以及觀光.體育.文化藝術的實行。 四、海外成長市場的納入:基礎建設系統輸出、經濟合作交流、連接數據流通活用與形成國際共通規則、中小企業的海外支援、日本魅力活化政策。