論數位經濟下研究報告開放近用及著作權例外國際新發展

刊登期別
第27卷第10期 ,2015年10月
 
隸屬計畫成果
經濟部技術處產業創新體系之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 論數位經濟下研究報告開放近用及著作權例外國際新發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7109&no=57&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
你可能還會想看
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

健康食品的管理法規

美國勞工部發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」文件,要為雇主和員工創造雙贏

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國勞工部(Department of Labor)於2024年10月發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」(Artificial Intelligence and Worker Well-Being: Principles and Best Practices for Developers and Employers)參考文件(下稱本文件)。本文件係勞工部回應拜登總統2023年在其《AI安全行政命令》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)中對勞工的承諾,作為行政命令中承諾的一部分,本文件為開發人員和雇主制定如何利用人工智慧技術開展業務的路線圖,同時確保勞工可從人工智慧創造的新機會中受益,並免受其潛在危害。 本文件以八項AI原則為基礎,提出最佳實踐作法,其重點如下。 1. 賦予勞工參與權(empowering workers):開發人員和雇主履行各項原則時,應該秉持「賦予勞工參與權」的精神,並且將勞工的經驗與意見納入AI系統整個生命週期各環節的活動中。 2. 以合乎倫理的方式開發AI系統:開發人員應為AI系統建立標準,以利進行AI系統影響評估與稽核,保護勞工安全及權益,確保AI系統性能符合預期。 3. 建立AI治理和人類監督:組織應有明確的治理計畫,包括對AI系統的人類監督機制與定期評估流程。 4. 確保AI使用透明:雇主應事先告知員工或求職者關於AI系統之使用、使用目的及可能影響。雇主及開發人員應共同確保以清晰易懂的方式公開說明AI系統將如何蒐集、儲存及使用勞工的個資。 5. 保護勞工和就業權利:雇主使用AI系統時,除應保障其健康與安全外,不得侵犯或損害勞工的組織權、法定工資和工時等權利。 6. 使用AI以提升勞工技能(Enable Workers):雇主應先了解AI系統如何協助勞工提高工作品質、所需技能、工作機會和風險,再決定採用AI系統。 7. 支援受AI影響的勞工:雇主應為受AI影響的勞工提供AI技能和其他職能培訓,必要時應提供組織內的其它工作機會。 8. 負責任使用勞工個資:開發人員和雇主應盡責保護和處理AI系統所蒐集、使用的勞工個資。

日本修法防止元宇宙品牌商標仿冒

日本政府於今(2023)年3月10日,閣議通過不正競爭防止法等一系列智財法律修正案,包括商標法、不正競爭防止法、意匠法(設計專利)、特許法(發明專利)、實用新案法(新型專利)、工業所有權特例法等智財相關六法修正案。5月11日送第211回國會(眾議院)審議中。 本次智財法律修正案,係為求智慧財產進行適當的保護與提升智慧財產制度的便利性,並確保國內外事業者間公平競爭,修法擴充他人商品型態的仿冒態樣,創設基於商標權人的同意下近似商標註冊制度;設計專利的新穎性喪失例外適用之證明手續的簡化、發明專利等國際申請優先權主張之手續電子化,另對外國公務員贈賄罪之罰金上限提高等措施。 為強化數位化多元事業品牌保護,除商標法修法以擴充可取得註冊商標,針對防止數位空間之仿冒行為,不正競爭防止法規定,自原始商品於日本首次銷售起三年內(不正競爭防止法第19條第1款第5項),禁止銷售與該商品非常近似的仿冒商品,然修法前前述行為態樣不適用於數位空間。本次修法為防止數位空間之仿冒行為,規定商品型態的仿冒行為,即使係發生於元宇宙等數位空間亦構成不正競爭行為,可行使侵害排除及侵害防止請求權(不正競爭防止法第2條第1款第3項)。 日本透過智財修法將商標保護觸角延伸入虛擬空間之作法,可作為我國未來政策推動與修法之借鑑。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP