為了實現在2018年將無人飛行載具(drone)運用於離島或山區的貨物配送之目標,日本國土交通省及產業經濟省自2017年9月起舉行了6次「關於無人飛行載具的目視外與越過第三人上空之飛行檢討會」,並於2018年3月29日發表了其所統整出無人載具進行無輔助者目視外飛行之相關要件。 依據現行航空法第132條之2、國土交通省頒布的「無人航空機飛行手冊」第3點、以及該發表的內容所示,無人載具的目視外飛行除須就機體、操縱技術與安全對策的面向具備相關要件,尚要求在操縱者之外,應配置輔助者,在飛行時監視飛行與氣象狀況,同時管制飛行路線正下方及其周邊的第三人出入,並綜整判斷上述資訊,適時給予操縱者安全飛行所必要的建議。 基此,該發表指出,考量到以現行的技術而言,地上設備與機上裝置仍難以完全取代輔助者所扮演的角色,故就無輔助者的情形,除在現行飛行基準上,附加:1. 飛行路線須選在第三人存在可能性低、且有人機不會飛行的場所與高度;2. 機體須具備預想中用途的相當飛航實績;3. 事前履勘飛行路線與擬定意外發生時的對策等條件外,又增設新的個別要件如下: (1)就第三人的出入管理,設置能遠距離監視的攝影機,並在管制區域設置看板或海報等,以警示附近居民; (2)對機體施以增加辨識度的塗裝,裝設可供遠距離監視有無有人機接近的攝影機、或將飛行計畫事前提供給有人機營運者; (3)隨時掌握自機狀況,擬定在異常情形發生時降落的適切對策; (4)在飛行路線或機體裝設氣象計以監測氣象狀態,令其得以在判明天候狀況超出機體所能負荷限度的當下即時降落。 預期該發表內容將會成為日本「面向空中產業革命之行程表」中,關於目視外飛行審查要點修訂項目的重要參考基準。
「歐盟網實整合藍圖與政策」歐盟在歐盟執委會的支持之下,致力於網實整合的發展,2015年6月歐盟提出以五項關鍵領域作為發展方向,包含交通、能源、健康、生產、以及基礎設施等。其中在智慧製造部分,主要為從大量生產到彈性、個別客製化生產,以及在生產以及產線自動化之下,增加市場競爭力。但針對此等發展,歐盟也提出未來將面臨幾點挑戰: 1.科學:網實整合系統應特別考量社會技術層面、使不同學科整合、結合相關系統理論,以及建構複式領域模型等 2.技術:由於不同的技術方法,因此應建立互通性平台系統、使自動化設計與執行更加成熟、減少資料隱私問題、整合安全性、建立系統方式處理無法確定之資訊等。 3.經濟:透過網實整合,從產品到服務,可建立新的商業模式。 4.教育:網實整合之應用需具備充分的條件,因此,可透過教育及訓練體制來增加對相關應用的認識。 5.法律:減少網實整合系統建立產生的障礙,消除法規解釋不清楚之部分,並且改善以確認整合系統應用正確性。 6.社會:網實整合應用對公共、產業以及政治等層面產生之改變與風險管理。 網實整合在生產力4.0的發展當中,屬於最為核心之部分,目前歐盟所舉出可能產生的面向與問題,值得作為未來政策法制方向之參考。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎美國國防部(Department of Defense, DoD)於2024年6月25日發布「關鍵點:國防部資訊技術發展戰略」(Fulcrum:DoD Information Technology (IT) Advancement Strategy),將持續促進DoD之IT變革,並為未來奠定基礎。 本戰略描述作戰人員在推動IT方面應達成之目標與重要性,並列出提供聯合作戰IT能力、資訊網路與運算現代化、最佳化IT治理、栽培第一數位人力等四大目標(Line of Effort, LOE),簡述如下: (1)提供聯合作戰IT能力(Provide Joint Warfighting IT Capabilities):在現今不斷變化且充滿競爭的全球環境中,該目標以使用者為中心,提供具功能性、可擴增、永續且安全之IT功能。並以改善作戰人員可用資訊為重點,以利在快節奏、多領域(multi-domain)作戰中獲得決策與競爭優勢。 (2)資訊網路與運算現代化(Modernize Information Networks and Compute):該目標著重於迅速滿足任務與商務需求,利用卓越技術與以資料為中心的零信任(Zero Trust)資通安全方法,提供安全且具更快資料傳輸速度、更低延遲與高度彈性的現代化網路。 (3)最佳化IT治理(Optimize IT Governance):該目標將提高傳送效率、節省成本,且透過從治理到資料獲取系統的簡化政策,以轉變治理制定更好的決策,包括使用強大資料功能。 (4)栽培頂尖的數位人才(Cultivate a Premier Digital Workforce):該目標將確保作戰人員為新興技術之布署做好準備,並持續致力於識別、招募、發展並留住最佳數位人才。其擴展DoD網路人力框架(DoD Cyber Workforce Framework, DCWF),著重於更廣義的數位人力,包括資料、人工智慧、軟體工程的工作角色。