德國科隆行政法院判決Google公司所提供之Gmail電子郵件服務為德國電信法「電信服務」定義下之規範對象

  德國科隆行政法院於2015年11月11日判決美商Google公司所提供之Gmail電子郵件服務為德國電信法「電信服務」定義下之規範對象,依據德國電信法第3條24之規定。因此,以該服務之提供者Google公司得依據德國電信法第6條第1項履行其「通報義務」。繼德國聯邦網路局(Bundesnetzagentur)於2012年7月透過正式通知美商Google Inc.需履行德國電信法第6條第1項之「通報義務」。

  Google公司指出Gmail不是電信服務,因為Google本身所提供之服務目的不是在於電子信號的傳送。

  德國聯邦網路局則指出,因為Google公司的伺服器,以專業術語來說,依據OSI模型(開放式系統互聯通訊參考模型,Open System Interconnection Reference Model, ISO/IEC 7498-1)定義,係有信號傳送服務提供的事實。Google透過獨特的傳送技術傳送數據信號,且針對其所傳輸的有所管控能力。此外,亦應更宏觀的來以電信法立法的宗旨與角度去審視是否此服務應受規範。德國聯邦網路局並不企圖於規範網路世界的一切。但是,像是Gmail或其他OTT服務業者應需要如同傳統電信服務業者般的,重視並履行其資料保護(Datenschutz)、消費者保護(Kundenschutz)、資訊安全(Sicherheit)上的義務。

  德國聯邦科隆行政法院判決支持德國聯邦網路局的見解,Google公司因其所提供之Gmail服務應履行德國電信法之通報義務。在定義上是否電信服務,並不是完全以技術面去做認知,更為重要的在於電信法的立法價值初衷。德國聯邦科隆法院已准許透過飛躍上訴(Sprungrevision)的方式將該案送於德國聯邦最高行政法院(Bundesverwaltungsgericht),此案將可能有最高行政法院的判決。若Gmail被認定為係屬「電信服務」,此判決將會針對全德國的OTT服務規範有所影響,需被德國聯邦網路局所監管。

相關連結
※ 德國科隆行政法院判決Google公司所提供之Gmail電子郵件服務為德國電信法「電信服務」定義下之規範對象, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7149&no=57&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
韓國2013年智財施行計畫檢討評估作法介紹

韓國2013年智財施行計畫檢討評估作法介紹 科技法律研究所 法律研究員 陳聖薇 2014年12月23日 壹、事件摘要   依據韓國智慧財產基本法第10條,韓國針對國家智慧財產施行計畫之執行成果,應定期進行整體檢討評估,以作為往後計畫之參考指標。為此,韓國於2014年8月11日公布「2013年度國家智財施行計畫之檢討評估結果」[1](以下簡稱2013檢討評估結果)。本文以下將簡要說明之。   如同「2012年度國家智財施行計畫之檢討評估結果」(以下簡稱:2012檢討評估結果),2013檢討評估結果針對2013年度國家智財施行計畫(以下簡稱2013年施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,以及地方自治團體等六個面向挑選出重點推動之35課題,由民間專家組成「政策評估團」,以確保評估之專業性及客觀性。而具體評估方式與指標以下分別說明之。 貳、評估方式與指標 一、評估方式   韓國考量到智財施行計畫之特殊性,再者,評估國家層級智財政策之成效,不僅需要評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,以作為下一年度計畫政策之參考。   為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。最後,本智財施行計畫之最終評估結果會告知相關機關,供其制定、執行政策之參考,並且運用於智慧財產財政分配方向及下年度施行計畫之制定上。 二、評估指標   在評估指標設計上,韓國一大特色在於其不以行政機關別為政策評估,而是以創造、保護、運用、基礎環境、新智慧財產等五大政策領域以及加上地方自治團體面向作為評估框架[2]。進一步之細部評估指標則運用國務總理室之政府業務評估(特定評估[3])基本架構,針對「政策形成–執行–成果」整個過程,分階段進行評估。此外,2013檢討評估結果是以2012檢討評估結果為基礎,將既有之指標統合、刪減後,再依據地方政策特殊性,增加地方自治團體之評估指標。指標變更事項有:依據各地方特殊性需要有針對地方量身訂作之「地方自治團體政策差別性」指標;針對識別性較弱之「推動日程之適當性」與「監督與情況變化之對應性」之指標整合。配分變更事項有:因應政策是否實際有感於民的比重日亦加重,「政策效果」之指標也加重配分;就新的指標針對中央與地方分別進行評估。詳細指標內容如下表所示 : 表1:2013年智財施行計畫之中央(地方)機關政策評估指標 區分 評估項目 評估基準 政策形成(30%/35%) 1.計畫確立之適切性(15%) 1-1.事前分析、意見蒐集之充實性(5%) 1-2.成果指標及目標值之適當性(10%) 2.政策基礎環境之確保水準(15%/20%) 2-1.推動體系之充實性(5%/10%) 2-2.資源分配之適當性(10%) 政策執行(30%) 3.推動過程之效率性(20%) 3-1. 與有關機關、政策之連結性(10%) 3-2.監督與情況變化之對應性(10%) 4.政策擴散之努力水準(10%) 4-1.政策溝通、宣傳、教育之充實性(10%) 政策成果(40%/35%) 5.政策成果及效果(40%/35%) 5-1.成果目標達成度(20%/15%) 5-2.政策效果(20%) 資料來源:韓國國家智財委員會,http://www.ipkorea.go.kr/index.do。 參、代結論   在前述評估機制運作下,2013檢討評估結果共列出8個優秀課題與4個待改善之課題。後續針對待改進課題,該主管機關在接受評估委員之改善意見後,會提出補充之改善計畫,表示其要如何解決政策推動之障礙因素,而國家智財委員會則會隨時檢視其執行狀況,並且適時給予政策支援。至於優秀課題部分,韓國將會提供細節資訊與相關機關共享,讓機關之間互相學習,樹立一個學習標準(benchmarking)。   從施行計畫、檢討評估到提供量身訂做之改善建議,顯示韓國對於建構智慧財產強國的企圖。而2012、2013檢討評估結果之經驗,也將持續提供為2014年檢討評估之參考,使智慧財產施行計畫之檢討評估能更具效率。 [1]韓國國家智慧財產委員會,2014年8月11日公布之第11回國家智財委員會決議〈13년 시행계획 점검평가결과〉。 [2]依據政策領域評估的課題計有 :創造(2)、保護(4)、活用(5)、基礎(3)、新智慧財產(4)以及地方自治課題(17)。 [3]韓國政府業務評估基本法第2條第4款,所謂特定評估,指國務總理以中央行政機關為對象,為統合管理國政,對必要之政策進行評估。

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日   科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。   為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。   為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。   另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。   研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。   NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。   GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。   為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

關於軟體產品的智慧財產權保護建議

  近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。   然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。   綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

FDA允許第一個可以直接對消費者進行個人基因遺傳的健康風險服務測試法-GHR

  「美國食品和藥物管理局(FDA)」於2017年4月6日准許「23and me個人基因遺傳健康風險服務測試(簡稱GHR)」進行行銷,FDA要求該測試方法可以一定準確度檢測出十種疾病及可能條件。GHR是第一個被美國食品藥物管理局授權允許直接對消費者進行測試並提供個人遺傳傾向及醫療疾病條件資訊給消費者的測試。   GHR試圖提供遺傳風險資訊給消費者,但這個測試無法確定人們發展成疾病或發病條件的總體風險,因為除了某些遺傳變體的存在,還有很多因素會影響健康條件的發展,包含環境以及生活方式的因素,因此該檢測可能可以幫助人們做選擇生活方式的決定或告知消費者專業的健康照護。   23and me的GHR測試是運作自隔離唾液樣品中的DNA,此檢測被測試超過500000個遺傳變體,其檢測關於發展成以下十種疾病或發病條件增加風險的存在與否,包括帕金森氏症(Parkinson’s disease)、阿茲海默症(Late-onset Alzheimer’s disease)、自體免疫問題(Celiac disease)、α-1抗胰蛋白酶缺乏症、早發性原發性肌張力障礙(early-onset primary dystomia)、因子XI缺乏症(factor XI deficiency)、高血病1型(gaucher disease type1)、葡萄糖6-磷酸脫氫酶缺乏症(glucose 6- phosphate dehydrogenase defiency)、遺傳性血色素沉著症(hereditary hemochromatosis)、遺傳性血栓形成(hereditary thrombophilia)。   此外,FDA更要求所有DTC測試在醫療用途目的上之使用必需要能跟消費者溝通,使消費者可以充分了解該測試法後選用。其中一個研究顯示,23andMe的GHR測試的相關資訊是容易被理解的,有90%的人能夠了解報告中所呈現的資訊。

TOP