德國科隆行政法院於2015年11月11日判決美商Google公司所提供之Gmail電子郵件服務為德國電信法「電信服務」定義下之規範對象,依據德國電信法第3條24之規定。因此,以該服務之提供者Google公司得依據德國電信法第6條第1項履行其「通報義務」。繼德國聯邦網路局(Bundesnetzagentur)於2012年7月透過正式通知美商Google Inc.需履行德國電信法第6條第1項之「通報義務」。
Google公司指出Gmail不是電信服務,因為Google本身所提供之服務目的不是在於電子信號的傳送。
德國聯邦網路局則指出,因為Google公司的伺服器,以專業術語來說,依據OSI模型(開放式系統互聯通訊參考模型,Open System Interconnection Reference Model, ISO/IEC 7498-1)定義,係有信號傳送服務提供的事實。Google透過獨特的傳送技術傳送數據信號,且針對其所傳輸的有所管控能力。此外,亦應更宏觀的來以電信法立法的宗旨與角度去審視是否此服務應受規範。德國聯邦網路局並不企圖於規範網路世界的一切。但是,像是Gmail或其他OTT服務業者應需要如同傳統電信服務業者般的,重視並履行其資料保護(Datenschutz)、消費者保護(Kundenschutz)、資訊安全(Sicherheit)上的義務。
德國聯邦科隆行政法院判決支持德國聯邦網路局的見解,Google公司因其所提供之Gmail服務應履行德國電信法之通報義務。在定義上是否電信服務,並不是完全以技術面去做認知,更為重要的在於電信法的立法價值初衷。德國聯邦科隆法院已准許透過飛躍上訴(Sprungrevision)的方式將該案送於德國聯邦最高行政法院(Bundesverwaltungsgericht),此案將可能有最高行政法院的判決。若Gmail被認定為係屬「電信服務」,此判決將會針對全德國的OTT服務規範有所影響,需被德國聯邦網路局所監管。
為了確保農村地區低功率電視(LPTV)播送的服務,與協助該等地區傳輸數位訊號,美國聯邦通訊委員會(FCC)決議從2009年8月25日起,不再接受新的類比傳輸運用與設備建置之申請,只允許新的數位低功率電視(new digital-only LPTV)及其有關之電視訊號轉換站的設置申請。此申請機會將限於特定區域,以及採行「先申請先服務」(first-come, first-served)的處理程序。此外,針對全國性的核發執照申請,則於2010年1月25日開始受理。 低功率電視起源於1982年,係FCC為了地方導向、實踐表意自由權利與促進文化多樣性,而在小型社區允許低功率電視執照擁有者得享有「次級性頻譜使用權」(secondary spectrum priority),於VHF(2-13)或UHF(14-51)頻段中,提供電視節目播送之服務。 根據2005年聯邦赤字削減法(Federal Deficit Reduction Act of 2005)規定,美國已於2009年6月12日全面停播類比訊號節目,改以數位訊號播送,但該法並未規範低功率電視台播送訊號的數位化時程,故有關既有低功率電視相關之管制亦須一併修訂,方能達到全數位化的視聽環境目標。
美國聯邦巡迴上訴法院判決 FCC無權要求網路中立性2010年4月6日美國聯邦哥倫比亞巡迴上訴法院於Comcast v. FCC一案中,判決美國聯邦通訊傳播委員會(FCC)要求網路服務供應商(ISP )對所有形式資料傳輸一視同仁的「網路中立性」要求係逾越權限,有違法律保留原則。此裁判將為美國大型網路內容提供業者(ICP)的經營模式及網路使用者上網習慣投下震撼彈。 網路中立性(Net Neutrality)係指同一ISP應公平地處理所有網路服務,不得因頻寬需求而有差別待遇。查原因案件乃業者Comcast禁止某些用戶透過網路點對點(peer-to-peer)的方式,傳輸大型影音檔案,其認為用戶這種做法會佔用過多頻寬,拖累其他用戶的網路速度;FCC則認為Comcast此舉違反了網路中立性。 在判決書中,哥倫比亞巡迴上訴法院援引判決先例(stare decisis),認為立法者課予FCC必須對全美人民提供一「公平、有效率、公正分配」的廣電服務。惟本案FCC擅以立法者未明確授權的網路中立性作為規制準則,逾越其管制權限而違法。 FCC發言人Jen Howard表示:「法院沒有道理否定保障網路自由與開放的重要性,也不該阻止其他可促成這個重要目的的方法。」此判決對諸多大力提倡網路中立性的大型ICP業者,無疑是一大打擊;ISP將來也可能對消費者依照資料傳輸流量分級收費(即tiered service),形成新的網路服務發展型態。FCC目前正極力爭取立法者通過「網路中立性法案」尋求管制的合法性,後續發展值得注意。
澳洲正式通過數位身分法案,未來民營企業將協助提供數位身分識別服務澳洲於2024年5月30日正式通過並簽署《2024年數位身分法案》(Digital ID Act 2024)和《2024年數位身分(過渡及相關條文)法案》(Digital ID (Transitional and Consequential Provisions) Act 2024,以下合稱數位身分法案)。數位身分法案將於2024年12月1日開始實施,而相關的支援規範(supporting rule)和資料標準(data standard)也已於同年6月25日完成公眾討論階段。 數位身分法案的實施將分階段進行,澳洲競爭和消費者委員會(Australian Competition and Consumer Commission)被任命為首階段的數位身分主管機關,未來隨著數位身分法案的落實和深化,澳洲政府可能會建立一個更具專業及獨立性的監管機構來負責這項業務。 澳洲將擴展現有的澳洲政府數位身分識別系統(Australian Government Digital ID System, AGDIS),在第一階段myGovID將作為唯一的數位身分識別服務提供給使用者,使其能夠更便利的使用政府線上服務。澳洲政府未來將擴展AGDIS的應用範圍至更多的政府和民營服務,並允許使用者選擇經認證的民營企業來提供數位身分識別服務。 數位身分法案的主要目標包括: 1.為個人提供安全、方便、自願和包容的方式,以在與政府和企業的線上交易中驗證其身分。 2.提供數位身分的識別服務,以幫助各類型的潛在使用者皆可融入數位社會。 3.加強用於驗證個人身分或屬性的個人資訊安全。 4.鼓勵社會使用數位身分識別和線上服務,減少因數位化不足而存在的地理與實體限制及經濟負擔。 5.提升澳洲社會對於數位身分識別服務的信任。 數位身分法案將採取以下措施來達到目標: 1.建立數位身分識別服務提供者的認證機制。 2.向經認證的數位身分識別服務提供更多的隱私保護措施。 3.建立一個安全、易於使用、自願、可訪問、包容和可靠的AGDIS。 4.加強以下三者的監督和管理: (1)數位身分識別服務提供廠商。 (2)AGDIS的使用者。 (3)AGDIS的性能和完整性。 澳洲的數位身分法案嘗試建構一套更加完整且安全的數位身分認證法律規範,並且將這個系統和產業推向整個澳洲社會,由政府促使更多服務提供者和服務使用者加入這個數位生態中,後續可持續關注以作為我國政府攜手民間企業推動國家與社會數位轉型時的參考。
歐盟執委會發布人工智慧創新政策套案歐盟執委會(European Commission)於2024年1月24日發布AI創新政策套案(AI innovation package),將提供全面性的激勵措施,協助AI新創公司、中小企業與歐盟AI技術之發展。AI創新政策套案預計將修訂〈歐盟高效運算聯合承諾〉(the European High Performance Computing Joint Undertaking),以創建AI工廠(AI factories);成立AI辦公室(AI Office);並建立歐盟AI新創與創新交流(EU AI startup and innovation communication),重點分述如下: (1)AI工廠:歐盟執委會在將2027年前透過〈歐盟高效運算聯合承諾〉投資80億歐元,在歐盟境內建設全新的超級電腦,或升級現有高效運算設備,實現高速機器學習(fast machine learning)與訓練大型通用AI模型(large general-purpose AI models),使AI新創公司有機會使用超級電腦與大型通用AI模型來開發各種AI應用。並且,AI工廠將坐落於大型資料存儲中心(large-scale data storage facility)周圍,讓AI模型於訓練時可取得大量可靠的資料。其次,AI工廠將藉由開放超級電腦來吸引大量人才,包含學生、研究員、科學家與新創業者,以培養歐盟高階AI人才,供未來歐盟持續發展可信任的AI(Trustworthy AI)。 (2)AI辦公室:該辦公室將設置於歐盟執委會內,用於確認與協調歐盟成員國AI政策的一致性。此外,該辦公室未來亦將用於監督即將通過之歐盟《AI法案》(AI Act)的執行成效。 (3)歐盟AI新創與創新交流:歐盟執委會將透過〈展望歐洲〉(Horizon Europe)與〈數位歐洲計畫〉(Digital Europe Programme),在2027年前投入40億歐元的公部門與私人投資,俾利歐盟開發生成式AI(Generative AI)模型。該政策套案亦將加速歐盟共同資料空間(Common European Data Spaces)之發展,使歐洲企業得取得可靠且具價值性之資料來訓練AI模型。最後,執委會將啟動歐盟〈生成式AI倡議〉(GenAI4EU initiative),將AI工廠所訓練之生成式AI應用於工業用與服務型機器人、醫療保健、生物科技與化學、材料與電池、製造與工程、車輛移動、氣候變遷與環境保護、網路安全、太空、農業等實際領域,刺激產業創新發展,改善人類生活。