亞利桑那州可望通過情色報復法,美國防治情色報復將再添一州

  美國亞利桑那州曾於2014年通過違反本人意願散布隱私內容之條文(泛稱為情色報復法Revenge Porn Law),構成要件未涵蓋行為人需有傷害的主觀不法構成要件,只要未經本人同意散布隱私內容即有可能觸犯本法而被判重罪(Felony),最高將可處三年又九個月之有期徒刑。然而,因構成要件過於廣泛,甚至未排除具新聞、藝術、教育價值之內容,未考慮本人之隱私期待性和傷害有無,美國公民自由聯盟遂代表出版業、媒體業和攝影業等,以該條文侵害言論自由有違憲之虞,於同年9月向亞利桑那州提告。該案於2015年7月10日達成和解,亞利桑那州地方法院宣告該條文將不會生效施行。

  在經過漫長的修法後,亞利桑那州參議院最終於2016年3月7日無異議通過情色報復法之最新修法法案(House Bill 2001),待州長簽署核准後便立即生效施行。本次修法與2014年的版本不同處為,檢察官需證明隱私內容之本人具有合理的隱私期待,若被害人曾將自拍的影像寄送與他人,更需證明被害人未有分享的意思。此外,檢察官需證明行為人具有意圖傷害、騷擾、威脅或迫使他人之主觀意思。在此條文尚未通過前,實務上已有檢察官多次反應現行法無從對違反本人意願散布隱私內容之行為論罪,至多僅能以網路跟蹤或霸凌法等追究,對受害人保護甚為不周。

相關連結
※ 亞利桑那州可望通過情色報復法,美國防治情色報復將再添一州, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7226&no=57&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日   科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。   為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。   為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。   另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。   研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。   NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。   GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。   為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

德國新營業秘密保護法—契約擬定「禁止逆向工程」條款建議

  德國新營業秘密保護法(The new German Trade Secrets Act, TSA)其中一個亮點即為:除非有明確契約或其他法規要求,逆向工程是合法的,其規範於該法第3條第1款,德國以往舊法(不正競爭防止法)並未特別明文,我國營業秘密法亦同。現今企業應盡快透過調整契約內容、保密政策或保密技術來防止該類法所「允許」之情形發生[1],以避免供應鏈間之風險。德國法律專家提出有關「制定合作契約」建議供參: 禁止條款應有期間明文:契約起草禁止逆向工程條款時需注意其法律效力。法明文允許進行逆向工程,也代表著可促進企業市場參與並能從現有技術中受益做進一步發展。如契約一律禁止形同限制經濟自由,無論該條款訂於平行契約(如研發契約)或於垂直契約(如授權契約),往後遇有爭議恐被法院認為條款無效。故可折衷於「期間」加以限制,禁止逆向工程直到產品或服務上市為止,基本上企業只有在確信可以收回成本情況下才會投資於新技術開發。合理而言應在產品或服務公開上市後,才可以對產品或服務進行逆向工程。 注意誠實信用原則並延長條款效力:現行法就禁止逆向工程與否可由締約雙方協議。該禁止條款並不當然有違德國民法第307條第2項誠實信用原則而不利益於締約雙方之情況。但為避免仍有違誠實信用原則疑慮,契約可明確約定於產品或服務上市前不限制締約人使用相對人產品或服務並從中發現技術或資訊,也確保該期間內營業秘密所有權人之營業秘密專有權。合作契約亦可約定禁止條款於契約提早終止一定期間內仍有效。 [1]Dr. Henrik Holzapfel,New german law on the protection of trade secrets, https://www.mwe.com/insights/new-german-law-protection-trade-secrets/ (last visisted Sep.25,2019).

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

紐西蘭人工智慧論壇所發佈人工智慧原則

  紐西蘭人工智慧論壇(AI Forum)協會成立於2017年,為非營利組織,是紐西蘭政府的重要智庫單位。該協會的AI法律、社會和倫理工作組於2020年3月4日發表了紐西蘭第一份《紐西蘭可信賴的AI指導原則》, 此指導原則目的在提供簡潔有力的人工智慧參考點,以幫助大眾建立對紐西蘭人工智慧的開發和使用的信任。此份AI指導原則對政府具有重要的參考價值。   《紐西蘭可信賴的AI指導原則》,內容摘要如下: 一、公平和正義 (一)適用紐西蘭及其他相關管轄地包含科克群島、紐埃、托克勞、南極羅斯屬地法律; (二)須保護紐西蘭國內法及國際法所規範的人權; (三)須保障《懷唐伊條約》中毛利人的權利; (四)民主價值觀包含選舉的過程和在知情的情況下進行公眾辯論; (五)平等和公正的原則,要求人工智慧系統不會對個人或特定群體造成不公正地損害、排斥、削弱權力或歧視。 二、可靠性、安全性和私密性 AI利益相關者須確保人工智慧系統及資料的可靠、準確及安全性,並在人工智慧系統的整個生命週期中,保護個人隱私以及持續的識別和管控潛在風險。 三、透明度 人工智慧系統的運作應是透明的、可追溯的、並在一定的程度上具可解釋性,在面對責問時能夠被解釋且經得起質疑。 四、人類的監督和責任 AI利益相關者,應該對人工智慧系統及其產出進行適當的監督。 在利益相關者確定適當的問責制度和責任之前,不應使用會對個人或群體造成傷害的技術。 五、福利 AI利益相關者應在適當的情況下設計、開發和使用人工智慧系統,盡可能促進紐西蘭人民和環境的福祉,像是健康、教育、就業、可持續性、多樣性、包容性以及對《懷唐伊條約》獨特價值的認可。   此份AI指引較大的特色有兩點,第一,紐西蘭人工智慧論壇協會的成員組成,其中女性成員比例超過半數。第二,在其指導原則中第一點的「公平和正義」及第五點「福利」中,都特別提到須遵守《懷唐伊條約》以確保毛利人的權益。在這樣的基礎下,能更期待紐西蘭在發展AI技術的過程,能夠更切實的做到公平正義、無歧視。

TOP