英國Ofcom「個資與隱私」報告

  針對告知消費者個資使用方式以及確保消費者對個資利用之參與及意見表達,英國通訊傳播管理局(The Office of Communications, Ofcom)於2015年6月17日公布委託德國顧問公司WIK-Consult進行之「個資與隱私」(Personal Data and Privacy)報告。報告指出,雖然法規要求在處理個資前必須獲取相關消費者的告知同意,但事實是消費者並未在線上實際閱讀隱私權政策條款,這個問題則由於智慧聯網大幅促進了裝置間的互聯性與資料的流通而更形嚴重。報告表示,雖然資料流通的本質不變,但僅因互聯裝置數量倍增就足以讓可近用與分析的資料呈等比級數成長,要在線上對這些遍及生活各層面的資料進行追蹤也就難上加難。

  對於這個起因於智慧聯網興起的問題,報告認為政府可能必須利用更複雜的契約關係加以規範。因為隱私權政策要能透明,必須指出究竟是哪些人會在何時以哪種方式為了何等目的去近用相關資料,但這勢必會讓隱私權政策條款更加冗長,這不但與隱私權政策盡可能應簡潔易懂相違,消費者也更不可能實際去閱讀。此外報告也指出,機台或裝置在智慧聯網下能夠在幾乎沒有人為介入的情況下進行溝通,此將大幅壓縮消費者能夠得知個資蒐集與使用方式的機會,智慧聯網也讓消費者可能根本沒有察覺其正在使用的裝置實際上已經與網路連線。另一方面,隨著互聯複雜性的大幅提高,有意或無意揭露個資也將帶來更多的潛在不利影響。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 英國Ofcom「個資與隱私」報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7291&no=55&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

FCC對於頻譜管理與拍賣的法規修正

美國聯那通訊委員會 (Federal Communications Commission, FCC)在本月十四日公佈了一份有關「商業頻譜加強法案(Commercial Spectrum Enhancement Act, CSEA)」的執行命令與法規預訂修正通知(Declaratory Ruling and Notice of Proposed Rule Making)。希冀能制訂一定的行政規則而確切地遵照CSEA的規範;同時,FCC也在文件報告中也提出了一些對於目前競價拍賣規則的相關修正意見。   最初在 CSEA法案中設計了頻譜的拍賣收益機制,主要係補償聯邦機構在一些特定頻率(216-220 MHz, 1432-1435 MHz, 1710-1755 MHz, and 2385-2390 MHz)中,以及一些從聯邦專屬使用區重新定頻到非專用區的頻率,因移頻所支應出的必要成本。而在FCC的公佈報告中,委員會認為惟有定義清楚,方能有效地落實該法的執行。因此FCC詳細解釋說明了CSEA中對於「總體現金收益(total cash proceeds)」的意義,FCC認為所謂的總體現金收益應該是原始獲標的價格扣除掉任何有可能的折扣或扣損;同時,FCC也在預定修正公告中,認為應改變委員會的拍賣價格規定以配合CSEA的規定。另外,也修正了部落地的拍賣信用補償制度(Tribal Land Bidding Credit Rule)等規定。

新加坡政府推出民眾資料共享平台MyInfo

  新加坡政府在2016年05月05日發表了數位平台「MyInfo」。   新加坡政府推出此一平台的目標是「以數位方式來整合目前的工作,去除現行的不便與散亂,讓民眾與政府打交道時更輕鬆 」。因此,「MyInfo」將每個新加坡公民散在各政府機關間的個人資料整合成單一檔案,使用者也可以自行決定加入額外的資訊,像是年收入、教育程度、就業情況以及家人資料。當民眾需要填寫不同的政府表單時,不需要再一直填寫重複的內容。   新加坡政府表示,每個公民可以自由決定他們要不要註冊MyInfo。當使用者選擇使用這項服務時,相關機關會針對可能被運用的資料先徵詢使用者的同意。   MyInfo計畫是由新加坡財政部與資訊通信發展管理局共同發起。新加坡政府的數位服務團隊在一年前左右開始設計這項服務,目前平台上仍持續在測試並改善使用者經驗。   MyInfo從2016年01月到04月試營運,已經有超過32,000人使用這項服務(佔新加坡總人口0.6%)。在2016年06月之前,MyInfo會提供15項服務,包括註冊公用住宅、更新報稅資料以及求職資訊等。到2018年,所有需要雙認證的數位服務都會整合在MyInfo平台,估計會有200項服務項目。   這個計畫是新加坡「數位政府」(Digital Government)政策的重要拼圖之一。新加坡政府將持續擴大MyInfo的服務項目,希望藉由此服務來蒐整更多資料,並增加可供政府機關間分享的個人資料數目。伴隨愈加豐富的數據資料,各政府部門更能事先了解民眾的需求並提出民眾真正需要的服務。

英國提出「緊急應變與復原準則」強化災難時之應變規定

  英國內閣辦公室(Cabinet Office)於2013年10月29日提出「緊急應變與復原準則:依循2004年國民緊急應變法之不成文準則」(Emergency Response and Recovery: Non statutory guidance accompanying the Civil Contingencies Act 2004),針對「應變與復原」作相關規定,以補充內閣辦公室於2006年1月1日提出「緊急準備規則」(Emergency Preparedness)對複合式緊急管理(Integrated emergency management, IEM)規定的不足之處。   英國「2004年國民緊急應變法」(The Civil Contingency Act 2004),為英國處理緊急事件之主要依據,「緊急應變與復原準則」即根據「2004年國民緊急應變法」制訂。此規則於「緊急應變章節」規定地方政府之緊急事件依嚴重程度區分為三級:銅(Bronze),僅需要操作指揮(Operational)、銀(Silver),需要策略指揮 (Tactical)、金(Gold),需要戰略指揮(Strategic),用以判斷是否區需要跨機關合作來因應緊急事故。如事故屬於重大緊急災難時,則屬於需要跨機關協調合作,藉由層級指揮及指令下達掌控應變程序與資訊傳遞,以因應長期及廣泛區域之災難。中央政府的權責在於全國性重大緊急事件,並且災難發生時之首相為最高行政首長,最高緊急機構為「內閣緊急應變會議」(Cabinet Office Brifing Rooms, COBR,又稱為眼鏡蛇),同時國民緊急秘書處(Civil Contingencies Secretariat, CCS)也需要協調跨部門及跨機構事務。   為提升災難應變與復原效率,2013年10月的「緊急應變與復原準則」,說明藉由地方的地方抗災議會(Local Resilience Forum)到中央等全國性之系統與網路串聯以傳遞緊急訊息,並建立三種層級之共同認知資訊圖像(Common Recognized Information Picture, CRIP),包括地方層級、區域以及國家級。此項系統必須足以傳遞並收集來自各方的大量資訊、能評估所收集各資料之性質,如緊急性、關聯性、說明性及可使用性等,並且能夠使大眾週知。   然,處理資料的過程仍有可能面臨數種問題,包括各機關之資料不同、判斷不同、理解錯誤及通訊超載等。2013年10月緊急應變與復原準則亦說明建立資訊管理系統(information management system)並安裝至多機構緊急管理中;而民間機構也應作為多機構之一環,並擔任資訊管理機構。同時,在共享資料之同時,必須注意資料保護,因此必須遵守「資料保護與共享-緊急計畫人與應變人準則」(Data Protection and Sharing-Guidance for Emergency Planner and Responders)。英國地域性與台灣近似,皆屬易於發生水患的國家,英國在緊急災難之應變於各方面的法制皆以趨於完善,殊值得持續觀察未來發展方向。

TOP