英國Ofcom「個資與隱私」報告

  針對告知消費者個資使用方式以及確保消費者對個資利用之參與及意見表達,英國通訊傳播管理局(The Office of Communications, Ofcom)於2015年6月17日公布委託德國顧問公司WIK-Consult進行之「個資與隱私」(Personal Data and Privacy)報告。報告指出,雖然法規要求在處理個資前必須獲取相關消費者的告知同意,但事實是消費者並未在線上實際閱讀隱私權政策條款,這個問題則由於智慧聯網大幅促進了裝置間的互聯性與資料的流通而更形嚴重。報告表示,雖然資料流通的本質不變,但僅因互聯裝置數量倍增就足以讓可近用與分析的資料呈等比級數成長,要在線上對這些遍及生活各層面的資料進行追蹤也就難上加難。

  對於這個起因於智慧聯網興起的問題,報告認為政府可能必須利用更複雜的契約關係加以規範。因為隱私權政策要能透明,必須指出究竟是哪些人會在何時以哪種方式為了何等目的去近用相關資料,但這勢必會讓隱私權政策條款更加冗長,這不但與隱私權政策盡可能應簡潔易懂相違,消費者也更不可能實際去閱讀。此外報告也指出,機台或裝置在智慧聯網下能夠在幾乎沒有人為介入的情況下進行溝通,此將大幅壓縮消費者能夠得知個資蒐集與使用方式的機會,智慧聯網也讓消費者可能根本沒有察覺其正在使用的裝置實際上已經與網路連線。另一方面,隨著互聯複雜性的大幅提高,有意或無意揭露個資也將帶來更多的潛在不利影響。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 英國Ofcom「個資與隱私」報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7291&no=55&tp=1 (最後瀏覽日:2025/12/25)
引註此篇文章
你可能還會想看
防範網路釣魚──事後追究有其侷限,多管齊下始屬正途

歐盟訂定新規範 管理傳統草藥品上市

  近年來,歐洲市場對傳統草藥的接受程度逐漸上升。傳統草藥銷售市場在歐盟成員國正在快速成長,其中從中國進口的傳統中藥數量更以倍數上升。目前歐洲市場上的天然植物藥約略可分為三大類:第一類是處方藥,用於治療危重病症的植物藥針劑也包括在內;第二類是非處方植物藥;第三類是保健製藥,可在保健食品店購買。歐盟去年通過的傳統草藥品指令(EU Directive on Traditional Herbal Medicinal Products)自2005年10年31日起,已全面生效適用於歐盟地區。該指令為傳統植物來源藥品於歐盟境市場內銷售,開啟了依照簡化查驗程序上市的途徑,但也限制了部分草藥品的上市可能。   其中較具衝擊性的是:傳統使用要件之認定嚴格。根據指令第16c(1)條,此一傳統使用歷史必須是30年以上,且其中至少有15年是在歐盟境內的使用歷史,方可考慮其安全性及療效。「傳統使用」仍須有相關文獻及專家證明其:(1)已使用相當年限之客觀事實、(2)具有安全性與療效之可信度,因此,簡化程序並無法適用於”偏方”之傳統草藥。而「必須是在歐盟境內至少有15年的使用歷史紀錄或資料」,更大大限制了在1990年前尚未進入歐盟會員國的草藥品,將可能因此被擠出歐盟市場。   該指令規定了七年的緩衝限期,可讓歐盟會員國調整不符合簡化查驗程序申請資格、但在該指令生效前已在各會員國市面上銷售的草藥品。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

美國「人工智慧應用管制指引」

  美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。

TOP