標準必要專利(standards-essential patents,SEPs)是國際標準組織所採行的一種專利運用模式,主要係為了使標準共通技術普及之同時平衡專利權人之利益,將技術發展中重要的標準共通技術結合專利保護,同時均要求專利權人須簽署FRAND(Fair,Reasonable and Non-discriminatory)條款,以公平、合理、無歧視之原則收取合理數額之專利授權費供標準化組織成員有償使用。然而,因專利本身即是一種合法壟斷,是以標準必要專利之授權模式可實現利益最大化;但涉及到具高度共通性又難以迴避的技術時,應當避免少數專利權人濫用專利權和市場壟斷。因此,專利權人和被授權人之間,對於收取合理專利授權費之議題,在一直無法取得共識之下,往往訴諸法律解決。從美國聯邦法院涉及標準必要專利侵權之訴訟案例,可看出美國針對標準必要專利目前主要有下列幾種趨勢:(1)合理之專利授權費以該技術佔產品元件之比率計算;(2)標準必要專利之授權費金額逐步降低;(3)專利權人必須先進行授權流程(4)不能直接申請禁制令。
本文為「經濟部產業技術司科技專案成果」
英格蘭與威爾斯法律委員會(The Law Commission of England and Wales)與蘇格蘭法律委員會(The Scottish Law Commission)於2022年1月26日聯合提出¬「自駕車修法建議報告(Automated Vehicles: joint report)」,總結其自2018年來三次公眾意見諮詢之回應分析,提出75項法律修正建議,提交英格蘭及蘇格蘭議會決議是否採納並修法。 修法建議範圍涵蓋廣泛,重要突破性建議包含: (1)整合英國原有之《2018自動與電動車法(Automated and Electric Vehicles Act 2018)》中自駕車之認定標準,訂定一套雙階段自動駕駛認證許可制度,於第一階段審驗「整車」之規格是否符合國際或國內車輛型式安全審驗標準,並於第二階段審驗¬¬¬「個別自駕功能」是否能符合國內交通法規。 (2)提出「主責使用者(User-In-Charge, UIC)」概念,若車輛設計為在某些情形下需要人工接手駕駛,則自動駕駛系統(Automated Driving System, ADS)啟動時,坐在車內駕駛座之自然人即為UIC。 (3)對於不需要UIC車輛(No User-In-Charge, NUIC)營運平台業者,以及合法自駕車業者(Authorized Self-Driving Entities, ASDE),提出資格條件要求,包含必須具備良好名聲、財務穩健,必須向主管機關提交安全案例(safety cases)等。 (4)因《2018自動與電動車法》中已有要求自駕車均須投保保險,因此當自駕車造成車禍及損傷,不需先經確認有無人為故意過失,即可先行以保險進行賠償。事後若保險公司認為自駕車設計製造者有責任,得再依商品責任規範轉向車廠求償。 (5)而為了幫助事故調查、釐清責任,自駕車相關資料之持有者(如ASDE)應將相關資料保存3年又3個月,以配合侵權行為之法律請求權時效。 本分報告綜合各方意見,以務實之態度提出具體修法建議,深具參考價值,值得我國深入研析。
美國聯邦貿易委員會 (FTC)「Non-Compete Clause Rule 」(禁止「競業禁止」條款)對於企業營業秘密保護的影響與建議.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)於2024年4月23日發布一項禁止「競業禁止」的最終規定「Non-Compete Clause Rule」(下稱FTC禁止「競業禁止」規定),近期關於該規定效力之相關訴訟引起美國各界廣泛的討論,有執業律師於2024年8月22日撰文提出企業面對該規定是否失效的不確定性,建議及早因應並加強營業秘密保護機制。 關於FTC禁止「競業禁止」規定,旨於美國境內禁止企業與離職員工簽訂競業禁止條款,該規定原預計將於2024年9月4日生效,生效後企業將不能再透過競業禁止約定作為營業秘密保護措施或訴訟上主張,而據FTC統計,約有3,000萬人(近五分之一的美國人)可能因此受到影響。然而2024年8月20日,「Ryan v. FTC」案中,美國德克薩斯州北區聯邦地區法院基於「認為FTC可能超越了其法定授權範圍以及規定過於寬泛」等原因,發布了一項全國性禁令,將導致FTC禁止「競業禁止」規定不會按計劃於2024年9月4日生效之效力,但FTC將會上訴。 對此,有相關實務界律師撰文指出,面對前述判決結果及各州的法規不一導致對於競業禁止條款仍有質疑的情況下,建議企業仍應及早因應並加強營業秘密保護機制,如: 1. 加入跨部門人員的協作:如熟悉企業營運過程中重要的關鍵競爭機密資訊的「業務與財務人員」、了解系統、流程管理之「資訊技術和安全」人員,以及與人員管理、教育訓練相關之「人力資源部門」等人員。 2. 建立合法的保護計畫:承上,該篇文章建議組織應藉由上述人員協助,檢視並強化落實以下機密(營業秘密)保護措施,包括: (1)營業秘密範圍確定:該篇文章提出企業應識別其機密(營業秘密)資訊,並篩選出最重要的類別。 (2)網路與環境設備管理:應確認企業(如:系統、設備、社交媒體等)政策是否足以保護不同類別的機密資訊,並符合法律(如:勞動法)要求,並重新檢視現行資訊安全機制之適當性,如網路安全策略及相關工具適用性、資訊洩漏風險點為何、目前權限管控合理性等。 (3)員工管理:該篇文章建議,企業需確認教育訓練實施,是否足夠向相關人員說明機密資訊和營業秘密對公司的重要性、是否納入對公司相關重要內容(如反壟斷法規的要求);於工作安排上,企業可透過建立人員管理備援機制(即避免一個業務只由單一員工負責),避免業務連續性與資訊安全中斷;於現行企業之保密契約、禁止招攬條款(Non-Solicitation Agreements)、入職/離職契約等契約上,建議確認是否「合法、未過度限制員工、涵蓋所有競爭敏感資訊(如員工及相關客戶或供應商的敏感資訊),在可能適用的地區具有可執行性(法律效力)」等。 (4)外部活動管理:對於外部合作對象,如合作夥伴、競爭對手等,本文稱「勞動力競爭對手(Labor Competitors)」的互動,如資料提供、簽屬合約之合法性等。 綜上所述,競業禁止在國際上的適用性,可能因應機關、各州州法、訴訟等因素受到各種挑戰,導致訴訟上可主張的權利減少,因此執業律師更建議企業應及早審查現行機制並加強或建立營業秘密保護措施加強對於機密資訊的保護。本文建議企業可透過資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)檢視既有管理制度並因應趨勢變動,以PDCA管理循環方式調整精進管理以達到管控目的,建立扎實的企業營業秘密管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國國防部「人工智慧國防運用倫理準則」美國國防部(Department of Defense)於2020年2月採納由美國國防創新委員會(Defense Innovation Board, DIB)所提出之「人工智慧國防運用倫理準則(AI Principles: Recommendations on the Ethical Use of Artificial Intelligence by the Department of Defense)」,以衡平倫理與人工智慧於國防帶來之增益。 美國國防創新委員會為美國聯邦政府下之獨立委員會,設置目的在於依美國新創科技,提供意見予美國國防部,與美國國防部並無隸屬關係。有鑑於人工智慧之運用範疇日益增廣,美國國防創新委員會遂提出旨揭「人工智慧國防運用倫理準則」,以因應人工智慧於國防之應用所產生之問題。 倫理準則適用於「戰爭或非戰爭用途之人工智慧之設計以及應用」,對於「人工智慧」之定義,倫理準認為人工智慧並無精確之範疇,只要「對於資訊有所處理並旨在達到所賦予任務之資訊系統」,皆為本準則下之人工智慧。倫理準則指出,「人工智慧」與美國國防部3000.09指令下之「自動化武器系統(Autonomous Weapon System)」之定義不同,但有可能重疊,而所謂「自動化武器系統」為「一經人類選擇啟動,即可在無人類監督之情形下,自動針對目標進行鎖定或進行攻擊之自動化武器系統」。 美國國防創新委員會表示,該準則旨在切合美國既有憲法、法律、國際公約之傳統標準下,融入現代化對於人工智慧之要求,如國際公約中之戰爭法(Law of War)即為本準則之傳統標準之一,舉例而言,如人工智慧被裝置於武器中,其設計及應用應符合最小傷亡原則、避免傷及無辜原則等。 除此之外,準則亦包含以下現代化對於人工智慧之要求:(1)人類對於人工智慧系統之設計、應用以及使用應善盡判斷以及注意義務,且人類應該對於人工智慧系統因瑕疵所帶來之傷害負擔最終責任;(2)對於目標之選擇或分類,應維持公平性,且不得有歧視性;(3)對於人工智慧之設計、應用以及使用,應有明確之工程標準以及資料保存程序,此一工程標準以及資料保存程序應為一般具有專業知識之工程人員可據以理解、分析、追蹤問題所在並加以改善;(4)「戰爭或非戰爭用途之人工智慧」應有明確之應用領域,且完善之檢測、維修,應適用於該人工智慧之全部生命週期。
2022年日本公布平台資料處理規則實務指引1.0版日本數位廳(デジタル庁)與內閣府智慧財產戰略推進事務局(内閣府知的財産戦略推進事務局)於2022年3月4日公布「平台資料處理規則實務指引1.0版」(プラットフォームにおけるデータ取扱いルールの実装ガイダンス ver1.0,簡稱本指引)。建構整合資料提供服務的平台,將可活用各種資料,並創造新價值(如提供個人化的進階服務、分析衡量政策效果等),為使平台充分發揮功能,本指引提出平台實施資料處理規則的六大步驟: 識別資料應用價值創造流程與確認平台角色:掌握從產生資料,到分析資料創造使用價值,再進一步提供解決方案的資料應用價值創造流程,以確認平台在此流程中扮演的角色。 識別風險:掌握利害關係人(如資料提供者與使用者等)顧慮的風險(如資料未妥適處理、遭到目的外使用等疑慮)。 決定風險應對方針:針對掌握的風險,決定規避、降低、轉嫁與包容等應對方針。 設定平台資料處理政策與對利害關係人說明之責任(アカウンタビリティ):考量資料處理政策定位,擬定內容,並向利害關係人進行說明。 設計平台使用條款:依據「PDCA循環」重複執行規則設計、運作與評估,設計平台使用條款。 持續進行環境分析與更新規則:持續分析內部與外部因素可能面臨的新風險,並更新平台資料處理規則。