無人機(Drone)也就是無人飛機或無人飛行器(Unmanned Aerial Vehicles, UAV),具備自動飛行系統的簡易模型飛機,自動飛行系統內可能包含一電腦作業系統、一套衛星導航裝置、羅盤功能、氣壓高度計、偵測器及設計飛行之軟體等等,簡稱無人機。茲因電子與無線傳輸科技進步,無人機在國際間掀起流行,近來無人機之使用引發安全疑慮,促進各國重視無人機的使用與法制管理。目前國際間陸續針對無人機立法管理的有美國、日本及歐盟等,我國行政院亦於2015年9月24日通過「民用航空法」部分條文修正草案因應無人機遙控管理規範。觀諸國際立法及修法趨勢,無人航空器之管理,包括無人機的體積、重量、使用用途、使用區域限制、使用時間限制、飛行速度或方法、飛行高度限制等,且亦須重視安全、隱私、資料保護、損害責任與保險相關問題,以及無人機所有權明確判別之方式等,因此我國未來就無人機相關管理規範或可參考先進國家重要管理規定,擬定更適合我國之「無人航空器管理規則」,俾利發展新興科技無人機市場時,同時能兼顧確保個人、國家與領空安全之規劃。
本文為「經濟部產業技術司科技專案成果」
韓國政府為支持人工智慧發展與建立人工智慧信任基礎,提升國家競爭力,韓國科學技術情報通訊部(과학기술정보통신부)於2025年1月21日公布《人工智慧發展與建立信任基本法》(인공지능 발전과 신뢰 기반 조성 등에 관한 기본법안,下稱AI基本法),將於2026年1月22日起生效。韓國《AI基本法》為繼歐盟《人工智慧法》(EU Artificial Intelligence Act)之後第二部關注人工智慧的國家級立法,並針對高影響人工智慧(고영향 인공지능)及生成式人工智慧進行規範,促進創新及降低人工智慧風險,將搭配進一步的立法與政策以支持人工智慧產業。 《AI基本法》有以下三個政策方向: 1. 人工智慧基本計畫:由科學技術情報通訊部制定並每三年檢討「人工智慧基本計畫」,經「國家人工智慧委員會」審議後實施,決定產業發展政策、培育人才、健全社會制度等事項。本法並設置人工智慧政策中心及人工智慧安全研究所,提供科學技術情報通訊部所需的研究與分析。 2. 扶持產業發展:以扶持中小企業及新創企業為發展方向,促進產業標準化的基本政策,爭取國際合作及海外發展。 3. 人工智慧倫理與安全性:政府公布人工智慧倫理原則,由相關機構及業者自主成立人工智慧倫理委員會,在政府發布的指引下建立貼近實務面的倫理指引。本法明確要求人工智慧產業必須負擔透明性及安全性義務,政府也推動認驗證制度,以確保人工智慧的可靠性。 韓國《AI基本法》將人工智慧發展方向及社會政策結合,明確要求政府制定人工智慧發展計畫並定期檢討,施行具體措施與設置必要組織,確立政府在人工智慧領域的角色,然產業界對於政府監管力度之意見有所分歧,為《AI基本法》後續相關政策及指引推動種下不確定性,值得持續追蹤相關動態作為我國人工智慧發展策略之參考。
CAFC判決未遵守自由授權條款構成著作權侵害美國聯邦巡迴上訴法院(CAFC)於2008年8月13日,在Jacobsen v. Katzer一案中,對於未遵守自由軟體授權條款而使用他人著作,作成構成著作權侵害之判決,扭轉地方法院之判決結果。由上訴人Jacobsen經營的JMRI(Java Model Railroad Interface),透過多數參與者集體協作的程式DecoderPro,為開放資源的自由軟體,採取Artistic License模式,供模型火車迷編輯解碼器晶片(decoder chip)的程式以操控模型火車;被告Katzer從 DecoderPro下載了數個定義檔來製作一套市售軟體稱Decoder Commander,卻未遵守該自由授權條款,包括未標示JMRI為原始版本之著作權人、可從何處取得標準版本、及修改後版本與原始版本差異部份之註記等。 Jacobsen認為Katzer的侵害著作行為已造成不可回復之損害,請求法院暫發禁止命令(preliminary injunction)以停止Katzer的違法行為,地方法院認為被告乃違反非專屬授權契約,應依違反契約責任負責,不另構成著作侵權行為,駁回暫發禁止命令的請求。 聯邦巡迴上訴法院認為本案爭點在於「自由軟體授權條款的性質究屬契約內容(covenant)或授權條件(conditions of the copyright license)?」,由於Artistic License之用語為「在符合下列條款之條件下」(provided that the conditions are met )方能重製、修改及散布,以遵守授權條款為取得授權之條件,本案中Katzer未能遵守條款,因而根本未取得授權,其行為屬無權使用而構成侵害著作權,是以命地方法院就暫發禁止命令一事重新審理。在善意換取善意(Creative Common,創用CC)及分享著作的潮流下,支持者譽此結果為自由軟體的一大勝仗。
美國參議院通過對開放政府資料(Open Government Data)政策法制化具指標性意義之「數位責任與透明法」(Digital Accountability and Transparency Act,DATA Act)草案美國參議院於2013年4月10日一致通過「數位責任與透明法」(Digital Accountability and Transparency Act,DATA Act)草案,現在續行送往眾議院審查。DATA 法草案目的在於使政府支出資料更為透明公開,且以得再利用的方式提供。該草案若通過,將建立使用聯邦基金(Federal funds)做支出或受資助的政府機關單位或其他實體財務資料的標準;擴展USAspending.gov網站含括上述資料,並要求聯邦政府以電子格式,自動化、標準化的方式公佈財務管理及採購相關資料,使公私部門便於近用與進行分析。目前草案版本內文並無規定資料特定格式的資料標準,但可得確定的是必須為被廣泛接受、非專有、可搜尋,且獨立於平台使用之電腦可判讀格式,以及可得一致適用於各機關單位之聯邦得標廠商與接受政府補助之實體的特殊標誌。 曾協助草擬2011年DATA法草案之「資料透明聯盟」(Data Transparency Coalition)執行長Hudson Hollister表示,DATA法草案把結構性的資料模式應用於聯邦政府支出時,將前所未有的激發責任與支出情況間的關係;同時,也將聯邦支出資料(federal spending information)轉化為開放政府支出資料(open spending data),成為強化民主治理與激發創新的重要公共資源。然而,由於DATA法草案所涉及的機關眾多,主要包括商務部(DOC)、財政部(DOT)、總務管理局(GSA),與預算管理辦公室(OMB),該法案通過後是否能落實,絕大部分還是取決於白宮是否會要求聯邦政府機關單位完整且迅速的遵循法律的構成要件。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。