無人機(Drone)也就是無人飛機或無人飛行器(Unmanned Aerial Vehicles, UAV),具備自動飛行系統的簡易模型飛機,自動飛行系統內可能包含一電腦作業系統、一套衛星導航裝置、羅盤功能、氣壓高度計、偵測器及設計飛行之軟體等等,簡稱無人機。茲因電子與無線傳輸科技進步,無人機在國際間掀起流行,近來無人機之使用引發安全疑慮,促進各國重視無人機的使用與法制管理。目前國際間陸續針對無人機立法管理的有美國、日本及歐盟等,我國行政院亦於2015年9月24日通過「民用航空法」部分條文修正草案因應無人機遙控管理規範。觀諸國際立法及修法趨勢,無人航空器之管理,包括無人機的體積、重量、使用用途、使用區域限制、使用時間限制、飛行速度或方法、飛行高度限制等,且亦須重視安全、隱私、資料保護、損害責任與保險相關問題,以及無人機所有權明確判別之方式等,因此我國未來就無人機相關管理規範或可參考先進國家重要管理規定,擬定更適合我國之「無人航空器管理規則」,俾利發展新興科技無人機市場時,同時能兼顧確保個人、國家與領空安全之規劃。
本文為「經濟部產業技術司科技專案成果」
美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。 為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。 The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。
日本智慧財產推進計畫2015分析(上)日本智慧財產推進計畫2015分析(上) 資策會科技法律研究所 法律研究員 蘇彥彰 104年08月26日 日本智慧財產戰略本部於今年6月19日公布了最新一期的「智慧財產推進計畫2015」[1],分析其內容,除仍以智慧財產的創造、保護、活用及三者間的有效連接作為宗旨外,並以少子高齡化與地方經濟衰退、智財糾紛處理機制的使用狀況和便利性、以及內容產業海外拓展的潛力及對智財戰略之重要性為背景,特別提出了「推動中小企業智財活用」、「活化智財紛爭處理機制」、「推動內容產業及週邊產業整體性的海外拓展」等三項核心議題,並分別剖析各項議題其現狀課題及主管部會應努力之方向,其內容如下: 一、推動中小企業智財活用 (一)現狀與課題 日本全國目前約有385萬間中小企業,不僅對於支持日本經濟具有重要地位,同時也是產業競爭力的來源。若中小企業能發展自身的智慧財產(包括技術、品牌等),以經營策略為基礎,有效透過智財戰略的權利化、標準化、隱密化等方式,應可將智慧財產活用於商業行為中,並且成功連結地域經濟的發展。然而以2013年而言,日本中小企業之中,將所擁有之技術或知識等加以權利化,申請發明專利、新型專利或商標其中之一的企業只有約3.3萬間,不到全部中小企業總數的1%[2],可知日本目前將智慧財產活用於商業活動的中小企業非常有限。 而於2015年度的智財推進計畫中,日本依據對智財的掌握度將中小企業區分為「智財活用挑戰型」和「智財活動發展型」二類,前者是指能將自身所擁有的智慧財產和構想加以權利化後,將之活用於產品的開發、生產乃至於拓展海外市場等挑戰性活動之中小企業,後者則是指尚未擁有足以權利化之智慧財產(尤其是技術),對智財的意識尚屬薄弱,生產產品的通路和交易對象偏向固定,多半處於承攬者地位之中小企業。 關於強化中小企業智財戰略的作法,就「智財活用挑戰型」之中小企業而言,有鑑於對於非都會區之中小企業,能從智慧財產和商業經營兩個不同角度提供建言的機能,在現行體制下仍有所不足,故有必要針對如何策略性取得並活用智財,以助於事業經營之經營意識進行強化,特別是思維上應不侷限於申請並取得專利權,而是針對關於權利化、標準化、隱密化進全面性強化輔導的專門體系實為重點;另就「智財活動發展型」之中小企業而言,則將重點置於利用各種可能機會,協助喚起其對智財的認知及意識,特別是對金融機構等中小企業的相關事業人員進行智財啟發。 另一方面,關於對非都會區十分重要的農林水產領域,隨著近年來全球化和資訊化的高度發展,日本認為除需要對於仿冒品和技術外流提出對應作法外,也有必要活用2015年6月開始採用的「地理標示保護制度」[3],以提高品牌價值、強化產業國際競爭力並活化地方經濟。 (二)今後施政方向 日本根據上述的現狀與課題,為強化中小企業等的智財戰略,同時促進大企業、大學和地方中小企業合作活用其智財,指示各主管部會應著手推動下列的施政方向: 1.強化地方中小企業智財戰略: 強化在各個都道府縣的支援據點數量,並且進行諮商體制及支援資源的強化,經由與中小企業的商業活動相關諮詢,發掘中小企業中與智慧財產相關的潛在需求,並且進一步透過智財綜合支援窗口,促進地域性中小企業活用自身之智慧財產,例如將其設計、品牌與活化產業或地域資源連結加以活用,提高中小企業所具有之無形資產之「能見度」,創造高附加價值的產品。 2.強化地方中小企業、大企業以及大學之智慧財產互助: 充實開放專利資料庫,使企業、大學、研究機關等之開放專利可直接透過網路進行整體性檢索,並在各地方行政機關配置支援人力,協助大企業將其所保有但未能有效利用之智慧財產(例如所謂之「休眠專利」),透過相對缺乏外部知識和技術等經營資源,但有意願接受技術移轉之中小企業進行事業化,以達成智財的有效活用;另針對大學與企業間共同研發情形進行調查,了解包括共同研發的專利申請型態、運用狀況和契約實務,以檢討共同研發之專利申請和契約內容的處理方式妥適性,進而從促進大學智財活用目標,以及兼顧中小企業、大企業、大學等個別需求和立場觀點下,設計具有彈性、可有效應用於在大學和企業間的契約內容。 3.推動農林水產領域智財戰略: 為推進農林水產領域的品牌化,在對於新導入的「地理標示保護制度」進行徹底宣導時,也應一併針對與地域品牌戰略有關的「地域團體商標制度」[4]間的選擇/搭配進行介紹,促進兩項制度的實際運用;對於海外市場,則透過與已導入地理表示保 護制度國家間的合作,使正牌日本特產能為當地市場所熟悉,整頓日本各地農林水產品向外輸出的環境。 (三)小結 與日本類似,我國的產業結構亦以中小企業為主,依經濟部中小企業處之統計,2013年我國中小企業有133萬1182家,占全體企業97.64%,就業人數858萬8000人,亦占全國就業人口78.3%[5],足見中小企業不僅是我國經濟之命脈,更是支撐就業及分配所得的基石。 經濟部中小企業處於2013年至2014年6月間,為協助企業經營體質創新發展、創新中小企業智財價值,協助具技術創新之中小企業,進行智慧財產經濟價值及多元智財運用之評估,並輔導企業強化重視智財權及協助導入智財管理制度,以縮短研發時程及節省相關研發投入成本,已完成67家中小企業智財權之短期診斷服務、完成4家中小企業專案輔導、完成2家中小企業產品安規及檢測服務、輔導6家中小企業導入智財管理制度、為企業節省研發先期投入成本650萬元/年、帶動後續投資金額及流通運用衛生收入金額達3085萬元/年等[6],已見相當成效。 我國後續或可參考前述日本作法,除持續加強中小企業智財戰略思維外,對於中小企業與大學或大企業間之智財互助,以及製造業以外之農林水產領域智財品牌化工作投注心力,以進一步實現中小企業之智財活用目標。 [1] 〈知的財産推進計画2015〉,知的財産戦略本部,http://www.kantei.go.jp/jp/singi/titeki2/kettei/chizaikeikaku20150619.pdf(最後瀏覽日:2015/08/14) [2] 〈中小企業・地域知財支援研究会 参考資料〉,特許庁, https://www.jpo.go.jp/shiryou/toushin/kenkyukai/pdf/chusho_chizai_shien/betten.pdf(最後瀏覽日:2015/08/13) [3] 〈地理的表示保護制度(GI)〉,農林水産省,http://www.maff.go.jp/j/shokusan/gi_act/(最後瀏覽日:2015/09/02) [4] 〈地域団体商標制度〉,特許庁,https://www.jpo.go.jp/torikumi/t_torikumi/t_dantai_syouhyou.htm(最後瀏覽日:2015/09/02) [5] 〈2014中小企業白皮書〉,經濟部,頁2(2014),http://book.moeasmea.gov.tw/book/doc_detail.jsp?pub_SerialNo=2014A01203&click=2014A01203#(最後瀏覽日:2015/08/26) [6] 同前註,頁252。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
從美國PayPal經驗與歐盟支付服務指令論我國第三方支付服務之現狀與未來