Spitzencluster-Wettbewerb由德國聯邦教育與科學部(Bundesministerium für Bildung und Forschung,BMBF)自2007年起開始推行,屬該國高科技戰略2020(hightech-strategie 2020)之政策配套措施之一,更是歐盟發展歐洲研發區位計畫(European Research Area)之一環。所謂聚落係建立在德國傳統工業區位分布上,利用群聚效應因應產業技術發展的複雜問題(產業問題非單一技術可解決),使各具專長之學研機構與企業共同分享產業問題研議出解決方案,分擔研發風險與成本等,增強合作效率,促進產業創新及升級。聚落多以成立協會(association)為主,平均每一聚落有近70個企業參與,原則上開放跨國參與者參與聚落之產學合作,並對會員收取會費。
本計畫作為重要的區域產學研合作計畫,乃承襲自德國過去不斷推動的區域產學研合作計畫,其特色是採取競爭方式選出德國境內優秀之聚落,並補助其相關研發計畫。自2007年至2015年間,已有三次選拔,並選出共15個領先聚落,分別涉及領域橫跨航太、資通訊、能源、生技等技術發展。至2015年為止總計已補助超過1300個計畫。2015-2017年將規劃有三次選拔,每回合挑選至多10個聚落獲得補助。目前本計畫已補助3.6億歐元預算,至2017年底將再投入5億歐元預算。
本文為「經濟部產業技術司科技專案成果」
英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)在2024年1月9日針對醫療器材(下稱醫材)提出「未來法規施行」(Implementation of the Future Regulations)規劃,旨在提升病人安全,並且確保英國市場對醫療技術創新者來說仍具有吸引力。本次內容主要包含2024年度規劃公告的重大法案,以及2025年後預計實施的核心政策,以下節錄相關說明: 1.預計於2024年實施的法規及政策 MHRA擬定了幾個重要法規及政策的公告時程表,主要包含名為「AI-Airlock」的監理沙盒 (AI-Airlock regulatory sandbox)及數則醫材軟體監管指引,主題有「醫材開發地圖的優良機器學習實踐」(Good machine learning practice for medical device development mapping)、「人工智慧醫材開發和部署的最佳實踐」(AI as a Medical Device(AIaMD) development and deployment best practice)及「資料驅動醫材軟體的研究、發展及治理」Data-driven SaMD research, development and governance);另外,因應世界貿易組織(World Trade Organization, WTO)於2023月7月26日發佈的 《上市後監督要求之行政立法性文件草案》(draft Post-market Surveillance Requirements Statutory Instrument, PMS SI),英國政府也打算在 2024 年引入相關立法,以加強醫材上市後的監管要求。 2. 未來核心政策規劃 MHRA已選定數個醫材管理核心主題,並預計從2024年上半年開始與利害關係人啟動相關討論會議,以利於2025年後制定更詳細的施政草案。管理議題明確包含對植入式醫材的風險分類進行升級、增加醫材軟體的分類、加強對醫材之品質管理系統與加強技術文件、推行專屬識別碼(Unique Device Identifiers, UDI)、更新臨床試驗施行措施、引入國際承認框架,使已獲得類似監管機構批准的醫材更快進入市場,以及促使英國對於醫材軟體網路安全等基本管理要求持續與歐盟接軌。 以上施政規劃,反映出英國政府為確保民眾安全,欲持續加強醫材品質的風險管理力道,以及隨著搭載AI技術的智慧醫材在各國快速發展,英國政府有意將此類的醫材朝向細緻化管理的布局。此外,英國於2020年脫歐後,歐盟的醫療器材法規在英國已不再適用,故MHRA近年積極發布更適合英國體質的醫材監管政策,以確保國內醫材市場保持國際競爭力,也避免醫材供應鏈發生短缺之情形。
日本發布成為可信賴夥伴的資料治理手冊,呼籲企業應建立並實施貫穿資料生命週期的資料治理機制日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
新加坡通過2010年版電子交易法施行細則繼新加坡2010年版本電子交易法(Electronic Transactions Act, ETA)於2010年7月1日式施行後,該國資通訊發展局(Info-communications Development Authority, IDA)因應修正電子交易法施行細則,該細則並於2010年11月1日起正式實施。其目的在使憑證機構管理制度得以配合新興資訊安全技術齊驅發展,進而使其與國際趨勢相符,修正要點如下: 1. 修正許可制為志願許可制:此次修正最大變革即在使該國憑證機構管理制度由原本的許可制,改為志願許可制。前者係使所有憑證機構均應向主管機關申請許可後,始能對外簽發憑證;而志願許可制則是原則上憑證機構對外簽發憑證無需主管機關許可,但憑證機構如果希望所簽發之憑證具備特定法律效果,則仍須經過許可。 2. 證據法上的推定效果:經過自願申請許可通過的憑證機構,經其所簽發之憑證而製作的數位簽章將有證據法上推定為真之效力,無待憑證用戶舉證即有其真實性,惟該真實性仍可由他方另舉反證推翻。換句話說,若數位簽章製作人使用的憑證為一般未經申請許可之憑證機構所簽發者,憑證用戶需先向法院提出其他輔助證據證明該簽章真實性。 3. 許可申請之要求:憑證機構自願申請許可時,應繳交申請費1千元新加坡幣(下同)及2年有效之許可執照費1千元。此外,新版施行細則統一整合舊有之「安全指導手冊」(Security Guideline)及其他各項稽核規定於「稽核需求要項表」(Compliance Audit Checklist),以供憑證機構得以更便利之方式了解並遵循共通之稽核程序。
美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。 「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。