何謂「創新採購」?

  歐盟為推動歐洲單一市場,在2014年2月26日通過三項新的政府採購指令,包括「一般政府採購指令」、「公用事業政府採購指令」、「特許採購指令」,其修正宗旨主要在於從下列四個改革方向改善採購招標程序:
1.簡化及採用彈性的政府採購程序
2.擴大適用電子招標;
3.改善中小企業參與招標程序;
4.於採購招標程序中納入策略性目的之考量,以實現「歐洲2020策略(European Strategy 2020)」之創新目標。

  因此一般政府採購指令第26條明訂,要求會員國應提供除原有之公開招標(open procedure,政府採購指令第27條)、限制性招標(restricted procedure,政府採購指令第28條)程序外,應另外提供創新夥伴(innovation partnerships,政府採購指令第29條)、競爭談判(competitive procedure with negotiation,政府採購指令第30條)及競爭對話(competitive dialogue,政府採購指令第31條)三種程序。

  其中最重要者,在於將政府採購視為其達成創新政策之政策工具,在招標程序中推動所謂的創新採購(Public Procurement for Innovation, PPI)及商業化前採購(Pre-commercial procurement, PCP)。

  前者係指創新解決方案幾乎或已經少量上市,不需要再投入資源進行新的研發(R&D)工作。而後者則針對所需要改善的技術需求,還沒有接近上巿的解決方案,需要再投入資源進行新的研發。採用競爭方法及去風險,經由一步一步的方案設計、原型設計、開發及首次產品測試來比較各替代方案的優缺點。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 何謂「創新採購」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7319&no=57&tp=5 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
生物倫理vs.生物科技 孰重孰輕?

  去(2005)年11月,全球幹細胞研究先驅-韓國首爾大學黃禹錫教授承認其研究有國際醫學倫理瑕疵,而引發軒然大波。主要爭議原因是其研究所使用之卵子,部分來自於其領導研究團隊的女性研究員,以及部分支付報酬給捐卵者。韓國「生物倫理及安全法」於2005年1月開始施行,立法目的強調生命科學及生物科技之發展應具有安全性並符合生物倫理原則,該法更明文規定:受試者需被充分告知資訊,亦有權同意是否參與研究以及不得買賣精子卵子等。因此,黃禹錫教授研究團隊的女性研究員雖是自願提供卵子,但在面對研究同儕壓力時,該名研究員是否真正”完全自願同意”地捐卵,此點頗受爭議。   隨著複製研究技術的與日俱進,生物倫理(Bioethics)相關議題已無國界之分,為此,聯合國科教文組織(UNESCO)於去(2005)年11月底之會員國大會,通過「世界生物倫理及人權宣言」(The Universal Declaration on Bioethics and Human Rights),建立起國際共通的生物倫理標準,希望能給各國在制定生物倫理相關法制政策有所依據,並作為相關研究行為之指導原則。   隨著韓國黃禹錫教授之幹細胞研究醜聞頻傳,國內生醫研究活動更應引為警惕,由於我國目前欠缺法律層次之研究倫理規範,前述UNESCO新近通過之「世界生物倫理及人權宣言」,在我國欠缺相關法律之現況下,更值得研究人員參考。

中國發布《國家中長期生物技術人才發展規劃(2010-2020年)》

  中國科學技術部與中國科學院等六個部門,於2011年12月8日聯合發布《國家中長期生物技術人才發展規劃(2010-2020年)》(以下簡稱「生技人才規劃」),期藉由具體政策措施之推動,充實國內生技人才資源,以促進生物技術及其產業蓬勃發展。   從中國國務院於2006年所提出的《國家中長期科學和技術發展規劃綱要(2006-2020年)》到科技部最近發布的《國家十二五科學和技術發展規劃》,均揭示「生物技術」為中國科技發展的重點領域。然而,現階段中國生技發展卻面臨了人才瓶頸,包括缺乏高層次創新人才、缺乏優秀創業型人才、人才資源開發投入不足,以及人才發展體制障礙待破除等問題,本規劃便在這樣的背景下誕生。   針對前述生技人才缺乏問題,生技人才規劃以「2020年時將中國打造成生物產業大國」為總體目標,分兩階段達成充實、培育生技人才的目的。第一階段為2011年至2015年,主要目標係在國內培育、造就一定規模的科技人才與創新團隊;第二階段為2016年至2020年,主要目標則為提高中國整體生技人才的素質,並建置5到10個具國際水準的國家生技實驗室。為達成前述目標,生技人才規劃宣示未來將分別實施以下各項政策措施,包括:持續給予優秀人才科研經費支援、鼓勵支持生物技術人才創業、加速生物技術人才在產學研各領域間的流動、制定優先支持生物產業技術人才發展的財政金融政策,以及吸引海外高層次生物技術人才回國創業或參與重大科研計畫等。   自2006年以來,中國於各個重大科技與產業政策規劃中,均將生物技術列為國家重點發展領域,顯見中國對於生技產業的重視,而根據往例,中國在發布重大國家政策規劃綱要以後,國務院各部門隨即會頒布相關法令及配套措施,以達成規劃綱要中所揭示的各項發展目標。因此,「生技人才規劃」頒布後,其後續相關的人才引進法制架構將如何呼應、達成綱要所訂的總體發展目標,值得持續觀察。

德國資料保護會議通過「哈姆巴爾宣言」,針對人工智慧之運用提出七大個資保護要求

  德國聯邦及各邦獨立資料保護監督機關(unabhängige Datenschutzaufsichtsbehörden)共同於2019年4月3日,召開第97屆資料保護會議通過哈姆巴爾宣言(Hambacher Erklärung,以下簡稱「Hambacher宣言」)。該宣言指出人工智慧雖然為人類帶來福祉,但同時對法律秩序內自由及民主體制造成巨大的威脅,特別是人工智慧系統可以透過自主學習不斷蒐集、處理與利用大量個人資料,並且透過自動化的演算系統,干預個人的權利與自由。   諸如人工智慧系統被運用於判讀應徵者履歷,其篩選結果給予女性較不利的評價時,則暴露出人工智慧處理大量資料時所產生的性別歧視,且該歧視結果無法藉由修正資料予以去除,否則將無法呈現原始資料之真實性。由於保護人民基本權利屬於國家之重要任務,國家有義務使人工智慧的發展與應用,符合民主法治國之制度框架。Hambacher宣言認為透過人工智慧系統運用個人資料時,應符合歐盟一般資料保護規則(The General Data Protection Regulation,以下簡稱GDPR)第5條個人資料蒐集、處理與利用之原則,並基於該原則針對人工智慧提出以下七點個資保護之要求: (1)人工智慧不應使個人成為客體:依據德國基本法第1條第1項人性尊嚴之保障,資料主體得不受自動化利用後所做成,具有法律效果或類似重大不利影響之決策拘束。 (2)人工智慧應符合目的限制原則:透過人工智慧系統蒐集、處理與利用個人資料時,即使後續擴張利用亦應與原始目的具有一致性。 (3)人工智慧運用處理須透明、易於理解及具有可解釋性:人工智慧在蒐集、處理與利用個人資料時,其過程應保持透明且決策結果易於理解及可解釋,以利於追溯及識別決策流程與結果。 (4)人工智慧應避免產生歧視結果:人工智慧應避免蒐集資料不足或錯誤資料等原因,而產生具有歧視性之決策結果,控管者或處理者使用人工智慧前,應評估對人的權利或自由之風險並控管之。 (5)應遵循資料最少蒐集原則:人工智慧系統通常會蒐集大量資料,蒐集或處理個人資料應於必要範圍內為之,且不得逾越特定目的之必要範圍,並應檢查個人資料是否完全匿名化。 (6)人工智慧須設置問責機關進行監督:依據GDPR第12條、第32條及第35條規定,人工智慧系統內的控管者或處理者應識別風險、溝通責任及採取必要防範措施,以確保蒐集、處理與利用個人資料之安全性。 (7)人工智慧應採取適當技術與組織上的措施管理之:為了符合GDPR第24條及第25條規定,聯邦資料保護監督機關應確認,控管者或處理者採用適當的現有技術及組織措施予以保障個人資料。   綜上所述,Hambacher宣言內容旨在要求,人工智慧在蒐集、處理及利用個人資料時,除遵守歐盟一般資料保護規則之規範外,亦應遵守上述提出之七點原則,以避免其運用結果干預資料主體之基本權利。

美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果

  美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。   「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。

TOP