歐盟為推動歐洲單一市場,在2014年2月26日通過三項新的政府採購指令,包括「一般政府採購指令」、「公用事業政府採購指令」、「特許採購指令」,其修正宗旨主要在於從下列四個改革方向改善採購招標程序:
1.簡化及採用彈性的政府採購程序
2.擴大適用電子招標;
3.改善中小企業參與招標程序;
4.於採購招標程序中納入策略性目的之考量,以實現「歐洲2020策略(European Strategy 2020)」之創新目標。
因此一般政府採購指令第26條明訂,要求會員國應提供除原有之公開招標(open procedure,政府採購指令第27條)、限制性招標(restricted procedure,政府採購指令第28條)程序外,應另外提供創新夥伴(innovation partnerships,政府採購指令第29條)、競爭談判(competitive procedure with negotiation,政府採購指令第30條)及競爭對話(competitive dialogue,政府採購指令第31條)三種程序。
其中最重要者,在於將政府採購視為其達成創新政策之政策工具,在招標程序中推動所謂的創新採購(Public Procurement for Innovation, PPI)及商業化前採購(Pre-commercial procurement, PCP)。
前者係指創新解決方案幾乎或已經少量上市,不需要再投入資源進行新的研發(R&D)工作。而後者則針對所需要改善的技術需求,還沒有接近上巿的解決方案,需要再投入資源進行新的研發。採用競爭方法及去風險,經由一步一步的方案設計、原型設計、開發及首次產品測試來比較各替代方案的優缺點。
本文為「經濟部產業技術司科技專案成果」
使用過Facebook(臉書)上傳照片時,不難發現其內建功能可透過臉部辨識「自動標記」(tag)好友的功能,建議用戶標記照片內的人物,而自從該功能於2011年啟用後,始終存有侵害用戶隱私權的疑慮。本案訴訟自2015年開始,及針對臉書「自動標記」的標籤建議功能爭論。美國於2018年經美國聯邦法院裁定,該功能在未經用戶同意的情況下蒐集並存儲相關使用者的生物特徵資料(biometric data),違反美國伊利諾州(Illinois)生物識別資料隱私法(Biometric Information Privacy Act)。雖然臉書已開始公開與用戶說明其可選擇關閉其識別功能,並針對上述聯邦法院判決提出上訴,卻仍於2019年8月敗訴。因此臉書同意以5.5億美元和解,用於支付伊利諾州的用戶(符合條件的)及訴訟相關費用。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
日本「未來投資戰略2017」日本內閣官房下設之未來投資會議於2017年6月9日,以構築「Society5.0」為目標,提出《未來投資戰略2017》,宣佈未來施政將以「延長健康壽命」、「實現移動革命」、「供應鍊的次世代化」、「街道活性化」以及「Fintech」等5大領域為中心。 在實現移動革命部份,《未來投資戰略2017》計畫藉由無人自動駕駛移動服務、小型無人機和自動駕駛船隻等,提高物流效率與實現高度化移動服務,以減少交通事故和解決人力不足等問題。 與此同時,日本亦將自2018年起展開卡車列隊行駛公路實驗,以期在2022年前達成卡車列隊行駛商業化之目標;此外,亦將於2018年起在山間地帶展開以小型無人機運輸貨物之實驗。除上述自動駕駛技術之實驗外,日本亦將朝向擴大駕駛資料收集和利用,主導制定資料傳輸規格等方向努力,並計畫於2017年底擬定高度自動駕駛系統商業化相關法規及制度之整備大綱。
歐洲議會表決通過碳邊境調整機制草案之議會版本,增修管制範圍、施行時間、主管機關和收入利用等規範歐洲議會於2022年6月22日表決通過碳邊境調整機制(Carbon Border Adjustment Mechanism, CBAM)草案之議會版本,為該次決議通過三項草案中之一項,而包含CBAM在內之三者皆屬歐盟去年7月所公布「Fit for 55」溫室氣體減量包裹法案中的一部份,正式施行後將要求進口商向歐盟購買「CBAM憑證」,繳交進口產品對應之碳排放量費用,希望促進非歐盟國家減少碳排放以及防止碳洩漏(carbon leakage)的風險,並避免氣候政策不積極國家的企業擁有不公平優勢,以進一步降低全球碳排放。而在此次議會通過之版本中,有幾點作了調整: (1)擴大管制範圍:在產品方面,除原先歐盟執委會所提出之水泥、鋼鐵、鋁、肥料及電力等5大類產品外,歐洲議會亦希望納入有機化學品、塑膠、氫氣和氨等產品。為確保順利實施,委員會將對有機化學品和聚合物進行技術特性之評估;同時歐洲議會也計畫將管制擴大至間接排放,即包含製造商使用電力所產生之排放,以更能實際反映歐洲工業的二氧化碳成本; (2)逐步實施CBAM並提前終止歐盟排放交易系統(Emissions Trading Scheme, ETS)的免費配額:CBAM預計從2023年1月1日開始試運行,原草案規劃試運行至2025年底,現延長至2026年底;在2023年至2026年過渡期間,歐盟出口商保有100%的歐盟ETS免費配額;而自2027年起則正式施行向進口至歐盟產品之碳含量進行定價,並要求進口商購買與繳交相對應之CBAM憑證。雖然出口商仍有ETS免費配額,但該配額將逐步遞減,並於2032年之前終止免費配額制度,由CBAM完全取代之,以避免對歐盟產業有雙重保護的情形; (3)設立CBAM集中管理機構:歐洲議會認為與其在各會員國內分別指派共27個個別之主管機關(competent authorities),應設立歐盟單一機構集中管理,以提升實施效率、透明度及成本效益;同時,也可避免第三國進口商在各會員國間因管制密度之差異而有挑選法院(forum shopping)的情況; (4)CBAM收入之應用:歐洲議會建議CBAM之收益應歸入歐盟預算,以對最低度開發國家(LDCs)提供至少相當於CBAM收入的財務援助,協助其製造業脫碳,以共同落實歐盟氣候目標,以及《巴黎協定》等國際承諾。