英國頻譜管理改革政策介紹

刊登期別
2006年10月
 

※ 英國頻譜管理改革政策介紹, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=745&no=57&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
新創及中小企業如何因應美國之《訴訟透明法案》

今年7月,美國國會議員Issa提出了《2024年訴訟透明法案》(H.R. 9922, the Litigation Transparency Act of 2024,下稱《訴訟透明法案》),要求當事人揭露民事訴訟中所取得之金融支援的來源,如商業貸款機構等,以提高訴訟透明度並降低濫訴之情形,惟此提案恐導致美國新創及中小企業更難成功起訴竊取其專屬技術之大企業。 近年來,許多大型科技公司從較小的競爭對手竊取其專屬技術,然而僅有少數案例成功取得賠償金,如:伊利諾州地方法院要求Amazon向軟體公司Kove IO支付5.25億美元的賠償金等。這是由於新創及中小企業縱有證據證明其智慧財產權被盜,在訴訟中多面臨沒有足夠資力與大型科技公司抗衡之窘境,因此往往被迫接受遠低於其所受損失之和解金。透過這種方式,大型科技公司能掌握技術並支付低於取得該技術授權所需之成本,因此被稱之為「有效侵權(efficient infringement)」。 新創及中小企業近期透過與第三方金融資助者協議共享訴訟取得之賠償等方式,降低其進入訴訟程序的經濟門檻,以對抗大型科技公司所採取之「有效侵權」。然而最近一系列案例顯示,中國大陸所支持的第三方金融資助者助長了針對美國企業之智財訴訟,引發了國家安全問題,故立法者為降低營業秘密被外國競爭對手取得之風險、避免無意義之訴訟被廣泛提起,要求當事人揭露其於民事訴訟中所取得之金融支援來源。若《訴訟透明法案》通過,原告所採取之法律策略將可能外洩,而第三方金融資助者亦將受到各方之抨擊,進而導致新創及中小企業在訴訟中更難取得金融支援。 綜上所述,若要降低訴訟之可能性,新創及中小企業須強化其對於專屬技術之保護,從根本減少專屬技術洩露之風險,以避免訴訟發生或進入後端訴訟。有鑑於新創及中小企業與大企業相比,在智財保護觀念上更接近學研單位,且對於營業秘密之管理多未臻完備,因此為確保其能有效落實對營業秘密之管控,建議新創及中小企業可參考智慧局所發布之《學研機構營業秘密管理實作要領》,量身訂作符合自身需求的營業秘密管理制度,並循序完善相應之營業秘密管理措施,以降低專屬技術被竊取的風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟針對數位化單一市場著作權指令法案達成改革性修正

  2019年2月13日,歐盟針對數位化單一市場著作權指令(Directive on Copyright in the Digital Single Market,2016/0280(COD))(下稱著作權指令)之爭議條款第11條及第13條進行討論修正,並達成共識。   從2016年9月,歐盟委員會提出修改新版著作權法,一直到去年9月12日,通過「著作權指令」法案,兩年多的改革過程始終產生多方爭議;其中,最具爭議性的有兩大條款:第11條「連結稅」(link tax),是要求網路平台業者在使用或摘錄其著作內容時,需向上傳的出版、新聞業者支付授權費用,對於Google、YouTube等網路巨擘易造成傳播新聞資訊的阻礙;而第13條「上傳過濾器」(upload filter),則是強調網路平台業者需負監督責任,防止上傳者侵權行為,現今流行的模仿搞笑影片、歌曲混音、翻唱影片等涉及部分著作權問題者,都有可能受到法規影響而大量減少。   近二十年以來,網路平台業者大多可以避免侵權責任,只要他們不知道上傳的內容侵權,並在發現侵權後立刻將內容移除。此次,著作權指令將加強規範於網路平台業者的行為,要求平台業者建立有效過濾機制,適當監督新聞傳播及熱門資訊之分享,並保護出版業、新聞業、文創產業等的著作權,且未來允許網路平台業者須支付授權費給著作權人。   此次修正的著作權指令法案,歐洲議會將預計於3月或4月進行投票,確認修法是否通過。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」

  2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。   本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。   報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。

TOP