新加坡次世代國家寬頻網路由Open Net得標

  新加坡資通訊發展局(Infocomm Development Authority, IDA)於2008年9月26日宣布,新加坡政府計畫投入7.5億新加坡幣資金建置之次世代國家寬頻網路(Next Generation National Broadband Network, NGNBN)由OpenNet公司得標,負責建置及維運次世代國家寬頻網路中靜態基礎設施(passive infrastructure)部分。

 

  新加坡之次世代國家寬頻網路預計在2010年時提供60%家戶光纖網路接取服務,至2012年6月份時,則可提供新加坡95%家戶光纖網路接取服務。就寬頻接取速度而言,初期可提供100Mbps之頻寬,待建置完成後則預估可提供之頻寬達1Gbps。未來,OpenNet公司將可在2年內從新加坡電信(Sing Tel)取得該公司已建置之管道、交換器等基礎設備。

 

  待網路建置完成後,OpenNet公司必須以住宅區光纖接取每月15元新加坡幣,非住宅光纖接取每月50元之價格,無差別地提供批發服務予網路接取服務提供業者,而不得自己提供接取服務予企業及一般家庭用戶。其次,為鼓勵建築所有人接取光纖網路,OpenNet公司在鋪設光纖網路進入建築時,將不收取任何裝置費用。預計自2013年起,在普及服務義務之要求下,OpenNet公司亦將持續負責將光纖網路接取至住宅、辦公大樓或其他建築物。換言之,OpenNet公司預計在2012年完成現有建築之光纖網路佈建,並於2013年起以履行普及服務義務之方式,持續光纖網路之建置工作。

相關連結
※ 新加坡次世代國家寬頻網路由Open Net得標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=57&tp=1&d=2929 (最後瀏覽日:2024/09/10)
引註此篇文章
你可能還會想看
5G汽車協會發布《道路使用者保護白皮書》

  5G汽車協會(5G Automotive Association, 5GAA)於2020年8月24日發布「弱勢道路使用者保護白皮書」(Vulnerable Road User Protection),點出目前道路交通安全對相關道路使用者保護不足,同時揭示未來車聯網(V2X)可提供整體用路人更安全之道路交通環境。   白皮書指出,道路安全是交通政策關鍵,應透過科技技術與政策制定,共同實現道路安全目標。而根據目前統計數據,弱勢道路使用者(Vulnerable Road User,以下簡稱VRU),包含:「行人」、「騎自行車者」、「騎電動車者」、「道路施工者」、「輪椅使用者」及「滑板或是單輪車使用者」,其占交通事故之傷亡比例最高,幾乎超過半數之死亡人數均為VRU,未來更可能因環境或與健康因素,使道路交通使用者數量不斷提升,對VRU之保護將成為未來各國交通之關鍵。   技術層面,則是車輛感測器偵測VRU、路側設備(Roadside Unit, RSU)、行動邊緣計算技術(Mobile Edge Computing, MEC)等,並進一步應用於車聯網下之不同案例情況:(1)高度風險區域:例如車輛進入行人密度極高的地區,透過感測器發出警訊,以即時警惕人車彼此存在,降低視線死角之事故發生率。(2)VRU與車輛透過裝置溝通:如車輛與VRU之間透過手機等設備傳輸相關資料並通訊。(3)車輛透過安全演算系統與VRU及各項設施交換訊息:此項涉及車聯網通訊應用下,車與車(V2V)和車與交通基礎設施(V2I)通訊,透過C-V2X PC5通訊技術軟體,使車輛、基礎設施與VRU之隨身電子設備之間得以進行通訊,降低事故碰撞發生。   綜上,未來應建立國際通用的車聯網之弱勢道路使用者保護標準,而非因區域而不同之標準,如目前美國汽車工程師協會之個人安全訊息標準(Personal Safety Messages, SAE PSM)及歐盟電信標準協會之弱勢道路使用者分布(Vulnerable Analysis Mapping , ETSI VAM),兩者在保護上即有所差異。VRU之保護服務是未來車聯網應用之關鍵與道路交通安全核心目標之一,相關系統與感測技術亦在不斷提升,未來更能融合感測器技術,並預測行人可能路徑,將全面提升道路安全。

科技產業申請租稅減免 國稅局:申報浮濫

  高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。   依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。   國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。

Linux創辦人捍衛商標權

  Linux 創辦人 Linus Torvalds 決心捍衛自己的商標權,並堅稱其要求商標再授權是賠錢生意。   Torvalds 日前委託律師發函給澳洲的 90 家公司,要求他們取銷任何 Linux 名稱的使用,並應向 Linux 商標的授權單位 – 非營利組織 Linux Mark Institute 購買再授權。這些公司必需個別支付 200 美元到 5,000 美元,以取得 Linux 商標的再授權,導致部分開放原始碼社群成員指控 Torvalds 想藉 Linux 的成功大撈一筆。 Torvalds 否認他自己,或任何人因 Linux 商標的再授權而賺錢,因為法律成本遠高於授權費,而律師所發出的通知函,僅是維護一個商標的必要動作。   Torvalds 最近也被人指控偽善,某些開放原始碼社群宣稱他對軟體專利的批評,與他行使專利權的作為互相矛盾, Torvalds 本身並未就此回應。惟反歐盟軟體專利規定的活動領袖,最近還被譽為智慧財產領域最重要人物的 Florian Mueller 表示,商標及著作權與軟體專利不同,軟體專利是有利於反競爭陣營和無產品的敲詐者的有力工具,但著作權和商標大致上獎勵那些創造和銷售真正產品的人,不加區隔地反對智慧財產權,是違法且無意義的;其並警告「反智慧財產激進主義」對開放原始碼的形象有害,某些右翼政客也同意 Bill Gates 的觀點,認為限制智慧財產權等於是共產主義,因此開放原始碼社群有必要將自己和反智慧財產權的觀點脫鉤。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP