日本內閣於2017年6月閣議決定「經濟財政營運與改革基本方針2017」,設定醫藥品項倍增目標,並計畫檢討在2020年9月前達成學名藥使用率80%以上之推動政策。基於上開方針,為實現「安定供應國民優良品質醫藥品」、「醫療費效率化」、「產業競爭力強化」等目的,厚生勞動省於2017年12月22日修訂「醫藥品產業強化綜合戰略~著眼全球展開之新藥研發」,希望日本醫藥品產業能從依賴「長期收載品」之商業模式,轉向具備更高新藥開發能力之結構。 「醫藥品產業強化綜合戰略」主要修訂內容如下︰(1)改善日本技術、相關知識等研究開發環境︰如推動癌症基因醫療、資料庫整備、利用AI進行醫藥品研究開發等;(2)透過藥事規制改革減低醫療成本和提高效率︰如善用附條件認可制度,以及先驅審查制度之制度化等;(3)醫藥品生產、製造等基礎設施之整備︰如制定相應之新技術品質管理等規範;(4)適當評價之環境、平台整備︰如各種臨床指引之整備;(5)向海外推廣日本製造之醫藥品︰如制定國際法規調適戰略等;(6)促進新藥開發業界之新陳代謝和全球化創新企業︰支援新創企業之人才育成、金融市場之整備等;(7)改善醫療用醫藥品之流通︰如制定流通改善指引等。
分子奈米技術獲重大突破加拿大分子奈米技術研究有重大突破,亞伯達大學科學家、艾明頓國家奈米技術研究所的 Bob Wolkow 及其同事經過多年研究,終於開發出分子電晶體。這一科研成果可能會研究報告在最新一期「自然」( Nature )雜誌上發表。 Bob Wolkow 日前接受採訪時指出,目前普通的電晶體中,需要上百萬個電子才能使電流轉換方向,但此次技術突破使得單一電子便能轉換該電流方向,以致可以大幅節約電能。過去曾有研究人員聲稱發現分子的導電性,但均沒有科學證據支持。他和他的同事此次使用掃描穿隧顯微鏡,確認可將直徑約為十億分之一米的分子轉換為電晶體。 此項進展可能是電子工業自五○年代電晶體革命以來的最大突破。多倫多大學的奈米技術專家魯達 Harry Ruda 指出,權威的「自然」雜誌稿件審核過程十分嚴格, Bob Wolkow 的研究成果能夠發表意義重大,必然會引起國人對奈米研究的廣泛注意,對相關領域科學家爭取研究資金很有幫助。 此外 Bob Wolkow 表示,他和他的同事已經著手設計有示範意義的單分子晶體電器,預計在 5 至 10 年內可出成果。他指出,這一示範電器不但可為開拓奈米電腦技術做出貢獻,還有可能為減低電腦晶片的生產成本鋪平道路。
美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。