中國大陸國務院李克強總理於2015年國務院常務會議研提「中國製造2025」政策,希望提升中國大陸製造業的發展。該政策為因應智慧聯網(Internet of Thing, IoT)的發展趨勢,以資訊化與工業化整合為主,重新發展新一代資訊技術、數控機床和機器人、航空航天裝備、海洋工程裝備及高技術船舶、先進軌道交通設備、節能與新能源汽車、電力裝備、新材料、生物醫藥及高性能醫療器材、農業機械裝備等10大領域,以強化工業基礎能力,提升技術水平和產品品質,進而推動智慧製造、綠色製造。而有別於德國所提出的工業4.0計畫,中國大陸所提出的是理念,係以開源開放、共創共享的智慧聯網推動創新思維。
本文為「經濟部產業技術司科技專案成果」
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 在2024年11月11日至22日舉辦第29屆聯合國氣候變化大會(COP29)上,國際標準化組織(ISO)發佈全球第一部ESG國際標準:ISO ESG IWA 48《實施環境、社會和治理(ESG)原則框架》(Framework for implementing environmental, social and governance (ESG) principles)(簡稱為IWA 48:2024),為全球各地區、不同規模的企業提供統一管理標準,同時提供實施指引和行動範例,應對永續發展挑戰。 IWA 48有以下幾大重點: 1. ESG原則和實踐(Principles and practices in ESG):強調誠信、成效、公平、風險與機會、證據、持續改善等原則。 1.1風險與機會:風險跟機會應由高階管理階層從組織整體評估,因風險可能同時伴隨機會;同時,管理層面要運用科學方法及可靠數據紀錄,評估與建立行動方案與追蹤管控。 1.2負責及公開透明:在ESG原則為關鍵要素,清楚揭露經營績效和永續資訊,不僅可增強利害關係人信心,也有助於保護組織商譽。 1.3利害關係人參與:組織應重視內、外部利害關係人的意見,如員工、股東、客戶、供應商等;舉例來說,組織落實資訊公開,並藉由問卷或會議形式,請利害關係人回饋期望或意見。 1.4重大主題:組織評估內外部之營運狀況所可能遭遇挑戰,且考量利害關係人回饋、產業特性,進而辨識各項議題之衝擊程度與關聯性,及排定優先順序來制訂行動方案。 1.5關鍵績效指標(KPI)評估:針對各項重大主題依可靠數據紀錄,進而運用量化或質化手段,設定短期、中期和長期之具體目標。 2. 環境(Environmental):評估組織營運活動與環境變化之相互關係,因此須要根據科學方法建立基準與制訂目標,確保營運過程能有效執行策略。 3. 社會(Social):主要關注組織如何承擔社會責任,推動具有社會價值行為和政策,除遵循當地勞動法令外,可額外提供福利或照顧措施,如組織接納各國人民,公平方式進行面試,培訓應保障不會發生任何歧視情事。 4. 治理(Governance):董事會或管理階層要明確公告組織永續政策與要求,並建立道德規範,如誠信經營,法令遵循、風險管理等,尤其鑑別永續相關風險,如當地法令異動、環境變化,更要與利害關係人保持溝通與合作,進而評估組織政策與執行方向,再依據營運需求調整。 5. 合規性和一致性(Compliance and conformity):組織可採用第三方查(驗)證方式,協助組織評估有無符合當地法令、達到ESG要求標準,及組織對於ESG之承諾。 6. 報告(Reporting):組織可公開揭露永續資訊,如永續報告書或年報等;再者,組織應確保揭露內容之準確、清楚與可靠,並正面及負面資訊均清楚完整揭露,以讓利害關係人了解狀況與趨勢。 7. 持續改善(Continual improvement):透過關鍵績效指標(KPI)檢核,定期確認組織達成永續目標狀況,如有未達預期情事者,應落實根因分析、制訂矯正預防措施,並予以揭露與執行改善,以確保能達到長期目標。
歐盟執行委員會提議建立網路安全研究與協調單位2019年7月24日歐盟執行委員會公布保障歐洲安全之措施,其中針對網路安全部分,將以2017年宣布之網路安全措施為基礎,建立網路安全相關之研究與協調單位,以投資培植歐盟更強大和更具開拓性的網路安全能力。該研究與協調單位預計於歐盟範圍內,以成員國內660多個網路安全專家中心的專業知識基礎,建立一個相互聯繫的網路安全產業和研究系統。此舉有助歐盟及成員國積極推行網路安全產業政策,並為產業和公共部門面臨的網路安全挑戰提出突破性解決方案。建立的相關研究與協調單位分別為: 一、歐盟網路安全產業科技研究能力中心(The European Cybersecurity Industrial, Technology and Research Competence Centre):此中心旨在培植網路安全能力社群,推動網路安全技術進程。並藉由分配補助金及執行採購來實踐數位歐洲及歐洲地平線計劃。 二、國家網路協調中心(Network of National Coordination Centres):每個會員國提名一個國家協調中心,為國家級聯絡點,負責聯絡網路安全能力社群及歐盟網路安全產業科技研究能力中心。國家網路協調中心是受國家支持採取行動的守門人(gatekeeper),同時可以向國家、地方系統提供資金。 三、網路安全能力社群(The Cybersecurity Competence Community):該社群為涉及網路安全技術的大型、開放及多樣化的組織。參與者有研究機構、供需產業雙方及國營部門。並為歐盟網路安全產業科技研究能力中心提供活動及工作計劃。
日本對未來2020年至2030年間網路基礎設施之預測日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。 在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。 物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。 人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。 由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。