中國大陸國務院李克強總理於2015年國務院常務會議研提「中國製造2025」政策,希望提升中國大陸製造業的發展。該政策為因應智慧聯網(Internet of Thing, IoT)的發展趨勢,以資訊化與工業化整合為主,重新發展新一代資訊技術、數控機床和機器人、航空航天裝備、海洋工程裝備及高技術船舶、先進軌道交通設備、節能與新能源汽車、電力裝備、新材料、生物醫藥及高性能醫療器材、農業機械裝備等10大領域,以強化工業基礎能力,提升技術水平和產品品質,進而推動智慧製造、綠色製造。而有別於德國所提出的工業4.0計畫,中國大陸所提出的是理念,係以開源開放、共創共享的智慧聯網推動創新思維。
本文為「經濟部產業技術司科技專案成果」
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
日本農業數據協作平台WAGRI開始自主營運「日本農業數據協作平台」(簡稱WAGRI)於2017年內閣府計畫的支持下,委由慶應義塾大學建立,該平台具備農業數據相容、數據共有與數據提供三大機能,日本IT企業NTT、富士通、農機大廠久保田、洋馬等均已加入WAGRI試營使用行列。今(2019)年該平台將移轉予國立研究開發法人農業食品產業技術總合研究機構(下簡稱農研機構),正式開始進入商業模式營運。欲利用WAGRI之機關除須向WAGRI協議會(由農業法人、農機製造商、ICT供應商、學研機構組成,以提出建議改善、普及WAGRI為其立會宗旨)遞交「入會申請書」外,亦須向農研機構遞交「利用規約」、「數據提供利用規約」與「規約同意書兼利用申請書」。 自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用: 數據利用(利用WAGRI數據者)、數據利用提供者(利用WAGRI數據且提供數據予WAGRI者) 平台利用月費5萬日圓 若利用有償數據時,須另外支付數據使用費 數據提供者(提供數據予WAGRI者) 平台利用月費3萬日圓 僅提供無償數據的數據提供機關,原則上不需要繳納平台利用費 我國為發展智慧農業,智慧農業共通資訊平台有提供免費OPEN DATA介接功能,近年發展智慧農業之農企/機關團體,亦有建立平台作為內部蒐集、利用數據之用,例如弘昌碾米工廠建置水稻健康管理與倉儲資訊服務平臺,未來該類平台均有可能朝商業模式發展。WAGRI建立一套商業模式嘗試自主營運,後續將持續追蹤WAGRI營運狀況作為我國智慧農業平台之運作參考。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
非評論、批判之著作若具新目的之轉化亦屬合理使用範疇之新見解 - Patrick Cariou v. Richard Prince美國聯邦第二巡迴上訴法院針對Patrick Cariou v. Richard Prince一案做出侵害著作權之合理使用判斷新見解,合理使用之目的主要為平衡著作權與美國憲法第一修正案之間的衝突,故1976年著作權法第107條中編寫有關合理使用之條文─在第106和第106A之規定外,對一受著作權保護作品的合理使用,無論是透過複製、錄音或其他任何上述規定中所提到的手段,以用作批評、評論、新聞報導、教學、學術交流或研究之目的,不屬於侵權。上訴法院認為被告Prince使用雖不符合批評、評論、新聞報導、教學、學術及研究等,卻是另有目的,可構成合理使用,更進一步指出被告的創意方法、表現形式等都與原告作品本質上不同,甚至還比原作新穎,因此,在轉化測試法則上建立了若以不同美學表達且加入挪用藝術手法的話,即使不具批判卻另有目的並加入新元素於創作,使原作改變之轉化,則構成合理使用。至於轉化測試法則確立於1994年的Campbell案,最高法院指出戲謔仿作可藉由諷刺原著作而轉化成與原著作不同的另一著作。 此案可謂針對合理使用於判定著作權侵害案件時,合理使用原則第一項因素成立轉化測試法則與否之新指標。著作權合理使用原則發展亦可觀察出美國有逐漸將判斷標準擴大之趨勢,而轉化測試法則之發展亦將持續追蹤之。
日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。 本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。