日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。
研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。
本文為「經濟部產業技術司科技專案成果」
全球最大網路設備業者思科(Cisco)公司在去年1月同意以8.3億美元併購以攔截與過濾垃圾郵件著名的軟體供應商IronPort Systems,以強化思科在資訊安全相關軟體方面的實力。思科購入IronPort公司後,不僅可為其客戶提供包括垃圾郵件過濾軟體和其他資安防護軟體,而此一併購案也象徵思科公司除本業的網路設備(router)外,也跨入資安軟體的領域進而挑戰其他大型防毒軟體業者(如賽門鐵克Symantec)。 以併購取得其他公司的商標、專利或人力資源等,在競爭激烈的商場十分常見,本來不足為奇,但此案值得注意的是原本思科公司的併購策略(acquisition strategy)是指派專人,將被併購的公司迅速融入思科體系,除取得原有的資源外,也可以快速地進入市場,此種方式亦是目前大多數廠商所採行的方法。 但自2003年後思科公司開始思考採取不同的併購方式:保留被併購公司的商標與行銷團隊,除可避免併購之後所可能產生的文化衝擊、制度磨合等問題,透過新的方式思科公司仍然獲得極大的收益。近來常聽聞國內的廠商積極併購其他公司,除成本或智慧財產等,管理制度亦是考量的重點之一,或許思科公司的策略可以提供給國內廠商參考。
何謂防禦型聯盟(Defensive Patent Aggregator)?其是否為NPE的重要類型?防禦型專利聯盟係為NPE之一種重要類型,主要以抵制NPE侵擾為出發點,防禦型聯盟儘可能搶先攻擊型如NPE者去進行專利的授權或購買,加入防禦型聯盟者則可付出比與NPE進行和解所支付費用較少的金錢,成員其會員以取得不被NPE侵擾的地位。 NPE中屬於防禦型聯盟(Defensive Patent Aggregator)者,RPX(Rational Patent)之運作模式常可作為主要類型化參考對象之一。RPX為上市公司,其主要核心業務在於「緩和其會員被訴之可能」。RPX取得專利之資金主要來自會員年費,而各會員可取得RPX所有專利之「授權」,而收費結構不當然等於獲取專利之成本之分攤,以使會員已低於一般訴訟和解、或取得爭議專利等更為低的代價來防止被訴。在此同時,RPX本身也不會對他人起訴。 RPX所提供的防禦性聯盟策略,先行於其他NPE取得前那些潛在「危險性」的目標專利,甚至有可能向NPE取得專利,必要時,直接於訴訟仍在進行之時去取得專利。而在防禦以外,如其他非會員向會員起訴,會員也可以以RPX所有之專利進行反訴。 目前RPX會費在6萬5千美元至6900萬美元之間,依照會員本身營運規模之不同定之,但「會費等級」(rate card)會自加入之初鎖定不再更動,實際每年繳交費用則可能依據RPX所取得的所有專利價值增加而上昇 。而除此主要運作模式外,RPX也運用其廣泛取得專利之經驗,提供個別企業服務服務,得以較低的躉售價格取得專利(Syndicated Acquisitions),反之企業自行購買專利可能需要付出較高的「零售」價格 RPX的運作模式對於加入成為其「會員」者有兩項優勢:第一,減少「專利蟑螂」可取得的專利數量;其次,因可理解為全體會員合力進行防禦型專利取得故能減低這些專利取得之成本。
優質網路社會基本法之推動芻議 世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。