美國加州聯邦法院於2015年12月裁定三星侵犯iPhone設計專利,需向蘋果賠償5.48億美元。三星不服因此上訴至美國最高法院,美國最高法院於今年(2016)10月11日開庭審理韓國三星電子公司的專利侵權糾紛案,針對加州聯邦法院授予蘋果的賠償金是否過多一事進行審議。
智慧手機是包含多個部件、技術之複雜產品,設計專利持有者不能因為某項專利侵權而要求獲得整個產品之全部利潤。本件上訴案中,三星聲稱「被認定侵權的功能僅占三星電子手機價值的1%,蘋果卻得到了三星電子100%的利潤」,認為加州聯邦法院針對侵犯蘋果的設計專利涉及手機的外觀(如圓角長方形機身、用戶介面),判定需用侵權產品的全部銷售利潤來支付蘋果3.99億美元之設計侵權賠償金並不公平。蘋果則表示,蘋果手機的成功與其獨特的外觀有直接關係,三星故意抄襲蘋果的創新設計並因此大幅提升產品銷量,因此有權要求侵權產品之全部利潤。
三星和蘋果間的專利糾紛訴訟已持續多年,自2011年起,已發生多起關於智慧型手機、平板在技術、用戶介面及風格上之抄襲糾紛。目前兩家公司在本案庭審中仍各執己見,而美國最高法院預計將於明年(2017)6月作出判決。
德國聯邦政府於2020年6月29日,針對歐盟執委會於2020年2月19日公布的《人工智慧白皮書-歐洲卓越與信任概念》(Weißbuch zur Künstlichen Intelligenz – ein europäisches Konzept für Exzellenz und Vertrauen)及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》(Bericht über die Auswirkungen künstlicher Intelligenz, des Internets der Dinge und der Robotik in Hinblick auf Sicherheit und Haftung) 提交意見,期能促進以負責任、公益導向、以人為本的人工智慧開發及使用行為,並同時提升歐盟的競爭力及創新能力。 歐盟執委會所發布的人工智慧的白皮書及人工智慧對安全和責任的影響報告,一方面可促進人工智慧使用,另一方面則藉此提醒相關風險。本次意見主要集結德國聯邦經濟與能源部、教育與研究部、勞動與社會事務部、內政、建築及社區部以及司法與消費者保護部之意見。德國政府表示,投資人工智慧為重要計畫之一,可確保未來的創新和競爭力,以及應對諸如COVID-19疫情等危機。最重要的是,可透過人工智慧的應用扶持中小型公司。然而在進行監管時,必須注意應促進技術發展而非抑制創新。 在《人工智會白皮書-歐洲卓越與信任概念》中指出,人工智慧發展應在充分尊重歐盟公民的價值觀和權利的前提下,實現AI的可信賴性和安全發展之政策抉擇,並於整體價值鏈中實現「卓越生態系統」(Ökosystem für Exzellenz),並建立適當獎勵機制,以加速採用AI技術為基礎之解決方案。未來歐洲AI監管框架將創建一個獨特的「信任生態系統」(Ökosystem für Vertrauen),並確保其能遵守歐盟法規,包括保護基本權利和消費者權益,尤其對於在歐盟營運且具有高風險的AI系統更應嚴格遵守。此外,應使公民有信心接受AI,並提供公司和公共組織使用AI進行創新之法律確定性。歐盟執委會將大力支持建立以人為本之AI開發方法,並考慮將AI專家小組制定的道德準則投入試行階段。德國政府指出,除了要制定並遵守歐洲AI的監管政策外,應特別注重保護人民之基本權,例如個人資料與隱私、消費者安全、資料自決權、職業自由、平等待遇等,並呼籲國際間應密切合作,運用人工智慧技術克服疫情、社會和生態永續性等挑戰。另外,德國政府亦支持將人工智慧測試中心與真實實驗室(監理沙盒場域)相結合,以助於加速企業實際運用,也將帶頭促進AI在公部門之運用。 在《人工智慧,物聯網和機器人技術對安全和責任之影響報告》中則指出,歐洲希望成為AI、IoT和機器人技術的領導者,將需要清楚、可預測的法律框架來應對技術的挑戰,包括明確的安全和責任框架,以確保消費者保護及企業合法性。AI、IoT和機器人技術等新數位技術的出現,將對產品安全性和責任方面出現新挑戰,而在當前的產品安全法規上,缺乏相關規範,特別是在一般產品的安全指令,機械指令,無線電設備指令等,未來將以一致地在各框架內針對不同法律進行調修。在責任方面,雖然原則上現有法令尚仍可應對新興技術,但人工智慧規模的的不斷變化和綜合影響,將可能增加對受害者提供賠償的困難度,導致不公平或效率低下的情形產生,為改善此一潛在不確定性,可考慮在歐盟層級調修產品責任指令和國家責任制度,以顧及不同AI應用所帶來的不同風險。德國政府除了支持歐盟作法,在創新與監管取得平衡,更強調應不斷檢視產品安全和產品責任法是否可滿足技術發展,尤其是對重要特定產業的要求,甚至修改舉證責任。並可透過標準化制定,加速人工智慧相關產品與服務的開發。另外,應依照風險高低擬定分類方法,並建議創建高風險AI系統之註冊與事故報告義務,以及相關數據保存、記錄及資料提供之義務,針對低風險AI應用則採自願認證制度。
中國大陸「網路預約出租汽車經營管理暫行辦法」所謂中國大陸《網路預約出租汽車經營管理暫行辦法》,是指中國大陸針對目前在各國都陸續發生法律爭議的網路出租車叫車平臺,例如源自美國加州舊金山的優步(Uber),或是中國大陸當地發展的滴滴打車服務,所制定的專法規範,以期解決網路出租車叫車平臺所可能產生的法律爭議。 類似Uber的服務型態,之所以會產生法律爭議,主要是因為汽車運輸載客的商業行為,在各國都會受到汽車運輸業的相關管制,以保障運輸服務乘客安全及消費權益。以德國為例,就曾因此對Uber進行行政處罰,並進一步於司法判決中要求Uber司機需取得營運牌照。 也因此中國大陸交通運輸部在2016年7月14日通過,並於2016年11月1日起施行《網路預約出租汽車經營管理暫行辦法》,該規定將網路預約出租汽車服務定義為「預約出租客運」,平台業者需負擔車輛營運、收益分配與司機管理等等的任務,且其地位為中國大陸汽車運輸載客法規中的客運服務承運人,需負擔相當責任,而並非如Uber等所主張的其僅為仲介平台,不具客運服務承運人之地位。 此外,該辦法亦要求網路預約出租汽車之司機應滿足無交通肇事犯罪紀錄、無危險駕駛犯罪紀錄、無吸毒紀錄、無飲酒後駕駛紀錄、無暴力犯罪紀錄等條件。
美國聯邦與州政府對於污染物排放超標免責立法之衝突。美國聯邦最高法院在2017年6月拒絕對聯邦法令-廠房之啟動,停工,與故障之許可證取得(Startup, Shutdown, Malfunction, SSM)底下之州際執行計畫(State Implementation Plans,SIPs)免責條款的上訴聽案,即各州對於SSM的污染物超標限制,無權力訂定免責條款。1聯邦法令SSM規定公司廠房等所有者或營運者需對於初始營運、日後關閉、中間故障等作業程序與維護措施做成報告以獲得並定期更新營業許可證,報告中需對於預測與計畫中的污染物排放與災難可能做說明,並以遵守聯邦法規對污染物排放相關規定為前提。2 聯邦政府當時以美國聯邦法規(Code of Federal Regulation)以及空氣清潔法案(The Clean Air Act)裡的國家周遭空氣品質標準(National Ambient Air Quality Standards) 為準則,授予各州訂定SIP的權限,因此才有各州多以促進經濟、展業發展為由而自行訂定免責條款的產生。 在原本的SSM機制下,計畫中的污染物超標可能適用各州的免責條款,而非計畫或預測中的污染物超標則會依是否有正當辯護,而可能被下禁治令。隨後,因美國前總統歐巴馬十分重視環境保護,而與美國環境保護總局(Environmental Protection Agency,EPA)頒佈新政策,下令各州把其SIP裡對於污染物超標的免責條款全部刪去。 這樣的大動作使各州政府與企業主十分不開心,便開啟了一連串與EPA的訴訟。2008年D.C.巡迴法院在Sierra Club v. EPA 3判定SSM期間內的違反污染污物排放限額不得有任何免責例外。2014年D.C.巡迴法院於Natural Resources Defense Council v. EPA 4更判定EPA沒有權限給予在SSM期間內違法業者創造任何答辯。雖然美國聯邦最高法院拒絕對此爭議聽案,但目前EPA仍有與州政府及企業主訴訟案在進行。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。