近來常聽聞各國以公私夥伴關係(Public-Private Partnership, PPP)之模式發展產業科技,PPP故名思義,係指結合公私部門之力量,以共同達成公共政策目標之合作模式。公部門可借重私部門的專業、經驗與品質,使其服務更有效率,私部門也可得到政府與政策之支持。
如今科技進步程度往往可代表ㄧ國之競爭力,惟科技研發需投入大量成本,因此各國多有針對科研補助之相關政策,從早年的單方補助,到如今強調公私合作進行科研的PPP模式。各國亦提出各種產官學合作研發的模式或組合之立法或相關政策。例如成立獨立非營利法人讓各項研發活動進行更方便、研究設施設備共享更容易的日本「技術研究組合」、芬蘭之SHOKs。荷蘭近來亦大力推行PPP研發之策略。德國之高科技領先戰略計畫( Spitzencluster-Wettbewerb)亦以區域聚落(該區域聚落即包含產業界、大學及其他相關學術機構)為單位,藉競爭給予補助的方式,促成該地區產官之緊密合作。
本文為「經濟部產業技術司科技專案成果」
美國為鼓勵與促進企業進行再生能源之研發,能源部(Department of Energy,DOE)規劃協助企業投入再生能源研發,並期加速商業化應用。為此,能源部將推出協助措施及推動計畫,其計畫經費一部分由美國復甦與再投資法案(American Recovery and Reinvestment Act)出資,另一部分來自於今年度的預算撥款。其中,三十億美元資金協助計畫將建置將近五千項涵蓋生質能、太陽能、風力發電以及其他再生能源之生產設備,另一項七億五千萬美元資金協助將改善電力傳輸系統。能源部期盼這兩項資金協助計畫,將帶動再生能源之研發,並促進新興能源科技的商業化應用。 有關美國協助民間發展再生能源計畫,今(2009)年七月底,美國能源部已公佈相關資金協助申請作業程序,預計每項提出申請計畫平均約可獲得六十萬美元額度,目前尚未對一家公司的申請額度設有上限,也並未對其可動用之資金額度設有總額限制,預計這些計畫將鼓勵私人投資再生能源,創造未來就業機會,協助帶動美國經濟。 能源部部長Steven Chu表示,這些協助計畫將激發綠色能源科技的創新,確保未來再生能源的輸送更為安全有效率,並將帶來相關就業機會。政府方面已設定目標,預計未來三年內將增加再生能源生產至目前的雙倍。為達成此一目標,必須確保有效地資金挹注才能加速再生能源的發展,同時設置完備的電力傳輸系統,整合各類型的再生能源,如太陽能與風力發電,便於日後將所生產的能源傳送至各地。
美國總統簽署《實證決策基本法》推動政府資料開放與建構以實證為依據制定政策之基礎美國總統於2019年1月14日簽署《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018),本法包含要求聯邦政府政策制定應以實證為依據,並規定開放政府資料法(OPEN Government data Act)相關措施,與確保機密資料安全及資料統計效率,據此做為推動政府資料開放共享與以實證為依據制定聯邦政府政策之法制基礎。 做為美國聯邦政府透明化政策的一環,本法最核心的部分即為開放政府資料法之相關規定,開放政府資料法的OPEN為開放(Open)、公開(Public)、電子化(Electronic)與必要(Necessary)之縮寫,象徵開放政府資料法的精神與意旨,其具體措施包含要求聯邦政府機關應盡可能公開其所蒐集之資料,依本法對資料的定義為被記錄的資訊,不論載體為何(recorded information, regardless of form or the media on which the data is recorded)。 而公開的資料應具備機器可讀性(machine-readable)、為或可轉換為自由檔案格式(open format)、不受除了智慧財產權保護以外之使用限制(即非國家機密或受其他法律保護的資料)以及應符合由標準制定組織所訂定之開放標準,除此之外每個機關應設置首席資料長(Chief Data Officer)負責上述資料開放事宜,以確保政府公開資料得以有效率的開放與共享。
溫室氣體減量及管理法重要議題簡析 法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。