近來常聽聞各國以公私夥伴關係(Public-Private Partnership, PPP)之模式發展產業科技,PPP故名思義,係指結合公私部門之力量,以共同達成公共政策目標之合作模式。公部門可借重私部門的專業、經驗與品質,使其服務更有效率,私部門也可得到政府與政策之支持。
如今科技進步程度往往可代表ㄧ國之競爭力,惟科技研發需投入大量成本,因此各國多有針對科研補助之相關政策,從早年的單方補助,到如今強調公私合作進行科研的PPP模式。各國亦提出各種產官學合作研發的模式或組合之立法或相關政策。例如成立獨立非營利法人讓各項研發活動進行更方便、研究設施設備共享更容易的日本「技術研究組合」、芬蘭之SHOKs。荷蘭近來亦大力推行PPP研發之策略。德國之高科技領先戰略計畫( Spitzencluster-Wettbewerb)亦以區域聚落(該區域聚落即包含產業界、大學及其他相關學術機構)為單位,藉競爭給予補助的方式,促成該地區產官之緊密合作。
本文為「經濟部產業技術司科技專案成果」
歐盟議會在2009年11月24日通過歐盟電信改革法案,其中包含12項重要改革: 1. 消費者要求以攜帶電話號碼方式變換電信公司時,只需一個工作日; 2. 強化對消費者資訊之傳達,包含使消費者充分知悉所訂購之服務內容、服務品質、賠償和退費機制; 3. 保障歐洲人民網路接取自由(Internet access); 4. 新的網路開放及網路中立(open and neutral net)保護措施,賦予國家及權責機關,得對網路服務之最低品質限度做出規範,且須於簽約前對消費者告知流量控管之技術,和該技術對其服務之影響; 5. 消費者個人資料保護及垃圾郵件(spam)之處理; 6. 更方便的緊急通訊服務; 7. 國家電信規範將更加獨立; 8. 新的歐洲電信主管機關將會協力確保公平競爭和電信市場規範之一致性; 9. 歐洲執委會被授予法規範補償制度之檢視權利; 10. 在面臨競爭問題時,國家通信機構可採取功能性分離(Function Separation)措施; 11. 加速全歐洲之寬頻接取普及率; 12. 鼓勵對下世代網路(NGA)之競爭與投資。 至於先前飽受爭議之三振法案,在多方溝通下,歐盟議會決議,人民之網路自由,是歐洲公民重要之權利,但在保護智慧財產權和藝術創作方面,需要找尋更新、更現代化,且更有效率的保護方法。至於切斷網際網路之服務,除非有「先前的、公正、無偏見」且「有效率並即時」的司法審訊程序,否則不應限制人民網路接取之權利。
美國FTC表示 將檢視網路中立性此一議題美國聯邦交易委員會主席 Deborah Platt Majoras 於日前一場會議中表示, FTC 將成立網路接取工作小組 (Internet Access Task Force) ,負責檢視因科技發展所引發的議題以及法規的發展方向。除此之外,此一工作小組亦將針對近期來爭議不斷的網路中立性 (Net Neutrality) 進行檢視。 Majoras 表示對於是否立法規範網路,宜謹慎加以考量之,因為法規的影響深遠且長久。在缺乏明顯的證據證明市場失靈或消費者有受到損害的情況下,主管機關不宜採取任何法制措施規範市場參與者的行為。對於任何網路中立性或相類似的立法,宜考量其對於現有寬頻平台及市場環境的影響,以及此等立法對於產業未來創新與投資的影響。而關於網路中立性 (Net Neutrality) 之立法需求及細節,將由網路接取工作小組負責檢視之,其後續發展有待未來更進一步的觀察。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。