以「公私夥伴關係(PPP)」發展科技之作法

  近來常聽聞各國以公私夥伴關係(Public-Private Partnership, PPP)之模式發展產業科技,PPP故名思義,係指結合公私部門之力量,以共同達成公共政策目標之合作模式。公部門可借重私部門的專業、經驗與品質,使其服務更有效率,私部門也可得到政府與政策之支持。

  如今科技進步程度往往可代表ㄧ國之競爭力,惟科技研發需投入大量成本,因此各國多有針對科研補助之相關政策,從早年的單方補助,到如今強調公私合作進行科研的PPP模式。各國亦提出各種產官學合作研發的模式或組合之立法或相關政策。例如成立獨立非營利法人讓各項研發活動進行更方便、研究設施設備共享更容易的日本「技術研究組合」、芬蘭之SHOKs。荷蘭近來亦大力推行PPP研發之策略。德國之高科技領先戰略計畫( Spitzencluster-Wettbewerb)亦以區域聚落(該區域聚落即包含產業界、大學及其他相關學術機構)為單位,藉競爭給予補助的方式,促成該地區產官之緊密合作。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 以「公私夥伴關係(PPP)」發展科技之作法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7650&no=55&tp=5 (最後瀏覽日:2025/12/17)
引註此篇文章
你可能還會想看
德國聯邦內政部公布《資訊科技安全法草案》

美國EPA計劃創建三大生質能源研究中心

  美國能源局(EPA)宣布,將創建三個生質能源研究中心(bioenergy centers),以研發將植物轉化為燃料的技術方法。此舉乃是布希總統作出美國在未來十年內將降低20%的石油用量之政策宣布後,第一個採取具體配套行動的聯邦政府機關。   生質能源研究中心設立的宗旨是希望在未來五年內能夠以先進技術,成功開發生質能源的產品上市。根據EPA的對外公告資料,三大生質能源研究中心將以公司組織的形式運作,每一個研究中心總投入資本將高達1億2千5百萬美元,三大研究中心分別是位在田納西州Oak Ridge、威斯康辛州的Madison以及加州Berkeley附近,這些區域原本就是重要的研究重鎮,匯聚許多的大學、國家實驗室以及私人企業,形成產業聚落,預計三大生質能源研究中心將自2009年9月1日起的預算年度開始運作。   EPA希望藉由研究中心的聚落效應,集中資源協助這些研究中心從自然界中破壞木質素(lignin)的微生物出發,找出植物的確切細胞膜質(cellulose)之所在。細胞膜質或稱纖維素,是轉化成為乙醇、液態燃料等能源的重要來源物質,因此這些生物運轉機制的瞭解與掌握,乃是開發生物能源技術的基礎。   值得注意的是,各國致力於發展生物燃料以替代汽油的政策,已經使得某些兼具多種用途的作物價格持續攀升,此可由國際期貨市場價格獲得印證。為避免生物燃料的發展反而造成食用作物的搶奪大戰,影響作物市場價格,研究中心也將致力於尋找可以製造較易處理的木質素的新作物種類。

法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)

法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。

新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

TOP