英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議:

(一)關於人工智慧及應用界定與發展

  人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。

(二)未來對社會及政府利益及衝擊

  人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。

  目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。

  在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。

(三)關於相關道德及法律風險管理課題

  人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考:

(1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。

(2)調適由人工智慧作決策行為時的歸責概念和機制。

  有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。

  針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。

  人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7678&no=57&tp=1 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
網路中立管轄權屬誰?FCC尋求法院支持

  美國聯邦上訴法院哥倫比亞巡迴分院(US Court of Appeals for the District of Columbia Circuit)於2010年1月12日,針對網路中立議題召開口頭辯論聽證會。該案上訴人為美國目前電視及網路服務市佔率最高的Comcast所提出,系爭案由為聯邦通信委員會(Federal Communication Commission, FCC)於2008年禁止網路服務提供者(Internet Services Provider, ISP)限制其用戶使用BitTorrent。   BitTorrent為一種常見的點對點傳輸程式,多用以線上檔案分享。該公司認為,FCC並沒有足夠的權力要求其不分用戶等級,全部提供毫無限制的服務;而FCC卻從保護消費者及網路應開放自由進入的角度辯述,從而使FCC是否有權力規範網路中立(Internet Neutrality)之議題邁入更激烈的討論。   所謂「網路中立」,意指網路服務提供者不得因傳送或下載資訊種類差異而提供不平等的流量服務。早在2005年,FCC即有一套管制網路服務提供者侵害網路中立的審查標準,但該標準並非為一體適用的法律位階,而FCC是否得依職權制定網路中立的規範,一直以來亦有所爭議,是故此次其與Comcast對簿公堂,FCC最終目的即是在尋求法院之見解,希冀獲得聯邦法院的支持而使其立法行動名正言順。   對此,聯邦最高法院原則上認同FCC以往對於「資訊服務」的見解,亦即,由於傳統電信服務往往與重大基礎建設相關,尤其是網路開放接取的相關規定,FCC應提高其管制密度;而屬低度管制的資訊服務(Lightly Regulated Information Service)則不應與電信服務有相同的對待;是故Comcast據認在網路中立尚未有明確權責規劃前,FCC實無權插手管控Comcast所提供之資訊服務。此外,該公司亦提出,類似BitTorrent的點對點傳輸應用程式往往用於大量檔案的交換,無限制地提供所有用戶使用,不但造成整體網路服務效能下降,由於傳輸的內容往往為影音檔案,亦間接侵害了Comcast本身的電視業務。   對此,雙方目前仍各執一詞,由於案件目前尚在上訴法院審理,FCC此次投石問路的策略是否成功還在未定之天,但可以確定的是,不論法院的見解為何,網路中立的爭議恐將持續發酵,並對後續網路服務提供之發展產生一定影響。

解析生技製藥研發成果涉及智慧財產保護之新課題

美國眾議院通過新法案-《CASE法》

  美國眾議院在2019年9月10日,通過了一項法案,該法案將建立一個類似法庭的機構,處理小額著作權爭議,為著作權侵權訴訟提供一種低成本的替代方法,這個法案稱之為《CASE法》(the CASE Act),又名Copyright Alternative in Small-Claims Enforcement Act。   《CASE法》將在美國著作權局內設立一個準司法機構,稱為著作權賠償委員會,此委員會並不在政府的司法部門下運作,每件侵權作品最高可獲得之賠償金額為三萬美元。在以往的著作權訴訟中,平均訴訟成本為27.8萬美元,這意味著許多獨立創作者不會真正進行訴訟,因為他們的作品還沒有那麼值錢,此項法案通過將有助於獨立創作者保護自己的權利。   有關《CASE法》之主要內容,其主要包含以下幾項: 對於當事人進行定義,並對賠償委員會組成員之成員進行規範,例如委員會的審查委員應是具備七年以上執業經驗之律師或者在著作權侵權訴訟方面有豐富的經驗。 對委員會職責與權限加以規定,例如,促進雙方調解成立、不得擔任與委員會職責相牴觸之任何職務。 對程序的進行有所規範,例如,得在訴訟中自願參加著作權賠償委員會之程序。程序的開始,為雙方當事人自願參加,而非課予當事人到庭之義務,強迫進入訴訟程序。 對調解程序相關行為進行規範,例如當事人之代表人可以是自己、律師,或是無償提供幫助之法學院學生。 規範調解做成之效果,例如,賠償委員會不能排除訴訟、不能反訴、不能下最終判斷,以及賠償委員會的任何決定,不得作為法律判決先例被引用等。   這項法案得到眾多藝術家和音樂發行人的支持,但受到一些消費權益團體反對,包括電子疆界基金會和公共知識組織(the Electronic Frontier Foundation and Public Knowledge),他們認為這項法案最大的缺點就是,缺乏結構性的保障以對抗濫用。這項法案對於被指控侵權的人幾乎沒有保護,更可能使不肖之徒有機可乘,隨意濫行訴訟以尋求更高額的和解金;加諸委員會並非司法部門,由委員會進行裁決,有憲法上疑慮,這都是需要詳加斟酌考慮。

演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

TOP