人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。
德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。
解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
本文為「經濟部產業技術司科技專案成果」
隨著個人資料保護意識的興起,各國也持續增修法律來保護人民權益以及協調產業標準,但這變動的過程會對本來就複雜的法律結構帶來更多挑戰。 如美國同時會有聯邦法與州法兩個層次的法律,當兩者分別發展隱私權相關法律規範時,難免會缺乏協調,出現定義不明的重疊規範,進而提高企業之法令遵循成本與管理成本。最終導致的結果,就是非必要地降低了產業發展速度,以及提高了消費者獲得服務的成本。 日前美國加州政府修改了首部以消費者個人資料權利為規範之州級法律「加州消費者隱私保護法(California Consumer Privacy Act, CCPA)」,使該部法案對於個人資料保護與利用之規範日漸完備,並減少與聯邦政府重複管轄項目,進而達到合理降低州內企業的遵法成本。美國加州州長紐松(Gavin Newsom)簽署的CCPA修正案「AB-713號法案」(Assembly Bill No. 713, an act to amend Sections 1798.130 and 1798.145 of the Civil Code )通過後,CCPA之適用範圍將限縮。若「同時符合」下列二者條件,則可免受CCPA規範: 受「加州醫療資訊保密法」(the California’s Confidentiality of Medical Information Act, CMIA)所規範的的醫療資訊及個人健康資訊之衍生資訊,或受「美國聯邦受試者保護通則」(Federal Common Rule for human research subjects) 所規範的可識別之個人資訊。 根據「健康保險可攜性及責任法」(Health Insurance Portability and Accountability Act, HIPPA)之標準,已去識別化的資訊。 換言之,已經依HIPAA標準去識別化之第一點資訊,即可豁免CCPA針對個人資料保護之相關規定。此將減輕本身不受 HIPAA 規範,但因進行研究或業務目的需接收 HIPPA 去識別化資訊企業之合規負擔。 「AB-713號法案」對於已去識別化資訊之利用或販售行為,增設了契約須載明下列規範架構之條款內容: 如有利用或販售去識別化資訊涉及病患資料者,須在契約中予以聲明。 禁止買受人或被授權利用人以任何方式重新識別去識別化資訊。 除法律另有規定,或第三方受到相同或更嚴格限制之個資保護約束,買受人或被授權利用人不得將去識別化資訊再行揭露予第三方。 「AB-713號法案」亦要求進行CCPA所涵蓋販售或揭露去識別化病患資訊的企業,其隱私政策聲明應納入以下內容: 將出售或揭露去識別化病患之資訊; 採用HIPAA所允許如專家法(Expert determination)或安全港法(Safe harbor)等之何種方式,進行病患資訊之去識別化。 整體來說,「AB-713號法案」讓CCPA的規範稍加鬆綁,明確排除CCPA對特定去識別化資訊之適用,並擴張對研究行為之豁免範圍,在處理上有更多彈性,惟同時也要求企業須充分揭露其個人資料處理原則。
歐洲推動人體生物資料庫再利用沙盒非營利組織EIT Health於2020年2月展開公共人體生物資料庫(Public biobank)再利用之「數位沙盒」(Digital Sandbox)計畫的第二次公開徵求。參與的中小企業於提案後,可於2020年7月底前獲得通過與否的通知,並最快於2020年9月開始參與計畫。 EIT Health成立於2015年,是歐洲創新技術研究所(European Institute of Innovation and Technology)下的「知識與創新社群」(knowledge and innovation community)之一,主要資金來自歐盟「展望2020」(Horizon 2020)。有鑑於數位革命創造了大量極具研究價值的醫學生物資料,EIT Health於2019下半年提出公共人體生物資料庫再利用之「數位沙盒」計畫構想,該計劃主要目的在支持中小企業利用該生物資料實施創新服務或開發產品。 而依據歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第89條規定,如果生物資料庫之利用係基於科學研究或公共利益之必要,可以在符合「適當的技術和組織措施」(Technical And Organisational Measures)之前提下得到豁免(exemptions)。依此條文,EIT Health之「數位沙盒」計畫參與者得不遵守GDPR第15條(資料主體之接近使用權)、第16條(更正權)、第18條(限制處理權)、第19條(關於更正或刪除個人資料或限制處理之通知義務)、第20條(資料可攜性權利)以及第21條(拒絕權)之規定。透過此計畫,有望幫助中小企業獲得公共人體生物資料庫、研究參與者(Sample holder)和登記冊的近用權限。此外,計畫亦提供最高35,000歐元的資金,以幫助中小型企業在開發創新產品時利用資料。
美國國家標準與技術研究院公布物聯網設備核心網路安全基礎指南草案美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2019年8月1 日公布「安全物聯網設備之核心網路安全特徵基準(Core Cybersecurity Feature Baseline for Securable IoT Devices)」指南草案,提出供製造商參考之物聯網設備網路安全基本要素,該指南草案中提出幾項重要核心要素如下: 設備辨識:物聯網設備必須有可供辨識之相關途徑,例如產品序號或是當連接網路時有具獨特性之網路位址。 設備配置:獲得授權之使用者應可改變設備的軟體以及韌體(firmware)之配置,例如許多物聯網設備具有可改變其功能或是管理安全特性之途徑。 資料保護:物聯網設備如何保障其所儲存以及傳送之資料不被未經授權者使用,應清楚可被知悉,例如有些設備利用加密來隱蔽其儲存之資料。 合理近用之介面:設備應限制近用途徑,例如物聯網設備以及其支持之軟體應蒐集並認證嘗試近用其設備的使用者資訊,例如透過使用者名稱與密碼等。 軟體與韌體更新:設備之軟體應可透過安全且可被調整之機制進行更新,例如有些物聯網設備可自動的自其製造商取得更新資訊,並且幾乎不需要使用者特別之動作。 網路安全事件紀錄:物聯網設備應可記錄網路安全事件並且應使這些紀錄讓所有人或製造商可取得,這些紀錄可幫助使用者與開發者辨識設備之弱點以近一步修復。
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。